Multicriteria ABC inventory classification using acceptability analysis

This paper introduces a new procedure for handling the multicriteria ABC inventory classification problem using stochastic multicriteria acceptability analysis. All possible preferences among the evaluation criteria have been considered. Due to the fact that even under certain preference, it is difficult to reach a group consensus on the exact weight values along with each criterion, we calculate preference-specific intervals under each preference and then formulate a stochastic decision-making problem. To tackle this problem, we consider different distribution functions of the intervals and then compute the holistic acceptability indices to classify stock-keeping units. The results derived from our method are compared to the previous results to show the robustness and superiority of our method.

[1]  Kaisa Miettinen,et al.  Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA) , 2003, Eur. J. Oper. Res..

[2]  Talel Ladhari,et al.  On the inventory performance of multi-criteria classification methods: empirical investigation , 2015 .

[3]  Rita Gamberini,et al.  New AHP-based approaches for multi-criteria inventory classification , 2014 .

[4]  Jafar Rezaei,et al.  Optimal ABC inventory classification using interval programming , 2015, Int. J. Syst. Sci..

[5]  M. Zied Babai,et al.  Multi-criteria inventory classification: new consensual procedures , 2016 .

[6]  Risto Lahdelma,et al.  SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..

[7]  Bruce E. Barrett,et al.  Decision quality using ranked attribute weights , 1996 .

[8]  Haitao Li,et al.  Optimizing ABC inventory grouping decisions , 2014 .

[9]  José Rui Figueira,et al.  The SMAA-PROMETHEE method , 2014, Eur. J. Oper. Res..

[10]  Risto Lahdelma,et al.  SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making , 2001, Oper. Res..

[11]  S. Greco,et al.  Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model , 2016 .

[12]  Ramakrishnan Ramanathan,et al.  ABC inventory classification with multiple-criteria using weighted linear optimization , 2006, Comput. Oper. Res..

[13]  Hyerim Bae,et al.  Cross-evaluation-based weighted linear optimization for multi-criteria ABC inventory classification , 2014, Comput. Ind. Eng..

[14]  Risto Lahdelma,et al.  Classifying efficient alternatives in SMAA using cross confidence factors , 2006, Eur. J. Oper. Res..

[15]  Peng Zhou,et al.  A note on multi-criteria ABC inventory classification using weighted linear optimization , 2007, Eur. J. Oper. Res..

[16]  Ian N. Durbach,et al.  A simulation-based test of stochastic multicriteria acceptability analysis using achievement functions , 2006, Eur. J. Oper. Res..

[17]  D. Clay Whybark,et al.  Multiple Criteria ABC Analysis , 1986 .

[18]  Tommi Tervonen,et al.  Implementing stochastic multicriteria acceptability analysis , 2007, Eur. J. Oper. Res..

[19]  Feng Yang,et al.  Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis , 2012, Eur. J. Oper. Res..

[20]  Keith W. Hipel,et al.  A case-based distance model for multiple criteria ABC analysis , 2008, Comput. Oper. Res..

[21]  Ian N. Durbach,et al.  Modelling uncertainty in stochastic multicriteria acceptability analysis , 2016 .

[22]  Chi-Yang Tsai,et al.  A multiple objective particle swarm optimization approach for inventory classification , 2008 .

[23]  Risto Lahdelma,et al.  Multivariate Gaussian criteria in SMAA , 2006, Eur. J. Oper. Res..

[24]  Risto Lahdelma,et al.  Stochastic multicriteria acceptability analysis using the data envelopment model , 2006, Eur. J. Oper. Res..

[25]  Bijan Sarkar,et al.  Distance-based consensus method for ABC analysis , 2007 .

[26]  Abdollah Hadi-Vencheh,et al.  An improvement to multiple criteria ABC inventory classification , 2010, Eur. J. Oper. Res..

[27]  Wan Lung Ng,et al.  Production , Manufacturing and Logistics A simple classifier for multiple criteria ABC analysis , 2006 .

[28]  Salvatore Greco,et al.  Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem , 2013, Eur. J. Oper. Res..

[29]  Kin Keung Lai,et al.  A distance-based decision-making method to improve multiple criteria ABC inventory classification , 2016, Int. Trans. Oper. Res..

[30]  P. Salminen,et al.  Prospect theory and stochastic multicriteria acceptability analysis (SMAA) , 2009 .

[31]  Risto Lahdelma,et al.  Two ways to handle dependent uncertainties in multi-criteria decision problems , 2009 .

[32]  Min-Chun Yu,et al.  Multi-criteria ABC analysis using artificial-intelligence-based classification techniques , 2011, Expert Syst. Appl..

[33]  Ching-Wu Chu,et al.  Controlling inventory by combining ABC analysis and fuzzy classification , 2008, Comput. Ind. Eng..

[34]  S. M. Hatefi,et al.  Multi-criteria ABC inventory classification with mixed quantitative and qualitative criteria , 2014 .

[35]  M. Z. Babai,et al.  ABC inventory classification : service levels and inventory costs , 2009 .

[36]  W. Martin,et al.  Towards a normative model for inventory cost management in a generalized ABC classification system , 2007, J. Oper. Res. Soc..

[37]  Tigran Melkonyan,et al.  Intrinsic Variability in Group and Individual Decision Making , 2016, Manag. Sci..

[38]  Murugan Anandarajan,et al.  Classifying inventory using an artificial neural network approach , 2002 .

[39]  H. Altay Güvenir,et al.  Multicriteria inventory classification using a genetic algorithm , 1998, Eur. J. Oper. Res..

[40]  Banu Soylu,et al.  Multi-criteria inventory classification with reference items , 2014, Comput. Ind. Eng..

[41]  Jonathan Burton,et al.  Using the Analytic Hierarchy Process for ABC Analysis , 1993 .