Thermodynamic analysis of Np–Zr–H, Am–Zr–H, Pu–Zr–H systems

[1]  T. Terai,et al.  Thermodynamic stability of ThZr2Hx at high temperature , 2005 .

[2]  K. Fujimura,et al.  Enhancement of Transmutation Characteristics of the Minor Actinide Burning Fast Reactor Core Concept Using Hydride Fuel Targets and Its Introduction Scenario , 2001 .

[3]  Griessen Heats of solution and lattice-expansion and trapping energies of hydrogen in transition metals. , 1988, Physical review. B, Condensed matter.

[4]  A. Driessen,et al.  Search for new metal-hydrogen systems for energy storage , 1984 .

[5]  A. Driessen,et al.  Heat of formation and band structure of binary and ternary metal hydrides , 1984 .

[6]  K.H.J. Buschow,et al.  Hydrides formed from intermetallic compounds of two transition metals: a special class of ternary alloys , 1982 .

[7]  A. Miedema,et al.  On the heats of formation of the binary hydrides of transition metals , 1980 .

[8]  A. Miedema,et al.  Which intermetallic compounds of transition metals form stable hydrides , 1976 .

[9]  K.H.J. Buschow,et al.  Hydrogen absorption in LaNi5 and related compounds: Experimental observations and their explanation , 1974 .

[10]  A. Miedema,et al.  The electronegativity parameter for transition metals: Heat of formation and charge transfer in alloys , 1973 .

[11]  J. Haschke,et al.  Equilibria and thermodynamic properties of the ThZr2H system , 1988 .

[12]  R. Griessen,et al.  Heat of formation models , 1988 .

[13]  Louis Schlapbach,et al.  Hydrogen in Intermetallic Compounds , 1983 .

[14]  F. R. de Boer,et al.  Model predictions for the enthalpy of formation of transition metal alloys II , 1977 .