Carboniferous Polymetamorphism Recorded in Paragneiss-Migmatites from the Bavarian Unit (Moldanubian Superunit, Upper Austria): Implications for the Tectonothermal Evolution at the End of the Variscan Orogeny

The Bavarian Unit in the Moldanubian Superunit exposes a distinct segment of the central European Variscan orogen, which is characterized by strong, late Variscan, low pressure, high temperature (LP–HT) metamorphism. The predominant lithology of the Bavarian Unit is a paragneissderived migmatite with abundant cordierite and K-feldspar. Rare paragneiss varieties with large garnets from the Lichtenberg complex near Linz (Upper Austria) record detailed information regarding the regional P–T–t evolution. The large garnet porphyroblasts of this exceptional rock preserve complex three-phase growth zoning indicative of a polymetamorphic history. Garnet cores with uniformly elevated grossular contents are discontinuously mantled by lower grossular garnet, and this calcium-poor central garnet zone is further overgrown by a garnet rim zone with elevated grossular content. Garnet zones also display different mineral inclusions, i.e. sillimanite, plagioclase and spinel in the core, and staurolite, biotite, plagioclase, sillimanite and muscovite in the mantle. Cordierite, sillimanite, K-feldspar and spinel in the matrix are equilibrated with the garnet rim. Geothermobarometric calculations coupled with thermodynamic modelling constrain the P–T peak of the first prograde metamorphism at 0 85–1 10 GPa and 720–780 C (garnet core). Subsequently there was a stage of decompression and cooling during which the first garnet generation became partly resorbed. A second prograde metamorphic stage resulted in a new growth phase of garnet. This started at 0 45–0 60 GPa and 580–630 C (garnet mantle) and progressed to granulite facies peak conditions of 0 55–0 65 GPa and 830–900 C (garnet rim). Th–U–total Pb dating of monazite inclusions in the garnet cores indicate a Visean age for the first medium pressure, medium temperature (MP–MT) metamorphic event (340 6 7 Ma), relating it to the Variscan collision stage. Dating of matrix monazite yields a Pennsylvanian age (312 6 5 Ma) for the LP–HT overprint, consistent with existing geochronological data from the Bavarian Unit. Our study documents that deeply buried Variscan collisional crust was exhumed to mid-crustal levels in the Visean, before being near-isobarically heated to LP–HT granulite facies conditions in the Pennsylvanian (Bavarian event of the Variscan orogeny). This P–T–t evolution implies a significant external heat influx into mid-crustal levels at the end of the Variscan orogeny. VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1359 J O U R N A L O F P E T R O L O G Y Journal of Petrology, 2018, Vol. 59, No. 7, 1359–1382 doi: 10.1093/petrology/egy063 Advance Access Publication Date: 22 June 2018

[1]  A. Eglinger,et al.  New insights into the crustal growth of the Paleoproterozoic margin of the Archean Kéména-Man domain, West African craton (Guinea): Implications for gold mineral system , 2017 .

[2]  J. Sláma,et al.  Implication of corona formation in a metatroctolite to the granulite facies overprint of HP–UHP rocks in the Moldanubian Zone (Bohemian Massif) , 2015 .

[3]  J. Sláma,et al.  U–Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif , 2013, Journal of the Geological Society.

[4]  P. O'Brien,et al.  High-T, Low-P Formation of Rare Olivine-bearing Symplectites in Variscan Eclogite , 2013 .

[5]  K. Ettinger,et al.  Subduction of lithospheric upper mantle recorded by solid phase inclusions and compositional zoning in garnet: Example from the Bohemian Massif , 2013 .

[6]  V. Kachlík,et al.  New evidence of blueschist facies rocks and their geotectonic implication for Variscan suture(s) in the Bohemian Massif , 2013 .

[7]  A. Gerdes,et al.  Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases , 2012 .

[8]  U. Teipel,et al.  Remnants of Moldanubian HP-HT granulites in the eastern part of the Bavarian Forest (southwestern Bohemian Massif): evidence from SHRIMP zircon dating and whole rock geochemistry [Relikte moldanubischer HP-HT-Granulite im östlichen Bayerischen Wald (südwestliche Böhmische Masse): SHRIMP Zirkon-Datie , 2012 .

[9]  A. Ladenberger,et al.  Multiple monazite growth in the Åreskutan migmatite: evidence for a polymetamorphic Late Ordovician to Late Silurian evolution in the Seve Nappe Complex of west-central Jamtland, Sweden , 2012 .

[10]  F. Gaidies,et al.  Toward a quantitative model of metamorphic nucleation and growth , 2011 .

[11]  S. W. Faryad Distribution and Geological Position of High-/Ultrahigh-Pressure Units Within the European Variscan Belt: A Review , 2011 .

[12]  K. Högdahl,et al.  Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden , 2011, Contributions to Mineralogy and Petrology.

[13]  J. Dostal,et al.  The high-pressure Iberian–Czech belt in the Variscan orogen: Extrusion into the upper (Gondwanan) plate? , 2010 .

[14]  A. Benisek,et al.  A ternary feldspar-mixing model based on calorimetric data: development and application , 2010 .

[15]  D. Dolejš,et al.  Incipient eclogite facies metamorphism in the Moldanubian granulites revealed by mineral inclusions in garnet , 2010 .

[16]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[17]  A. Gerdes,et al.  The Saxo-Danubian Granite Belt: magmatic response to post-collisional delamination of mantle lithosphere below the southwestern sector of the Bohemian Massif (Variscan orogen) , 2009 .

[18]  B. Cesare,et al.  A thermodynamic model for titanium and ferric iron solution in biotite , 2009 .

[19]  J. Keppie,et al.  Ancient Orogens and Modern Analogues , 2009 .

[20]  G. Gutiérrez-Alonso,et al.  Rheic Ocean mafic complexes: overview and synthesis , 2009 .

[21]  J. D. Connolly,et al.  Titanium in phengite: a geobarometer for high temperature eclogites , 2009 .

[22]  W. Siebel,et al.  Two Distinctive Granite Suites in the SW Bohemian Massif and their Record of Emplacement: Constraints from Geochemistry and Zircon 207Pb/206Pb Chronology , 2008 .

[23]  P. Sylvester Laser Ablation-ICP-MS in the Earth Sciences CURRENT PRACTICES AND OUTSTANDING ISSUES , 2008 .

[24]  D. Harlov,et al.  Whole-rock, Phosphate, and Silicate Compositional Trends across an Amphibolite- to Granulite-facies Transition, Tamil Nadu, India , 2007 .

[25]  Z. Stráník,et al.  Geologická mapa České republiky 1:500 000 , 2007 .

[26]  L. FunnvreN,et al.  Ternary-feldspar modeling and thermometry , 2007 .

[27]  Vojtech Janousek,et al.  TECHNICAL NOTE Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit) , 2006 .

[28]  R. Kaindl,et al.  P–T–t evolution of spinel–cordierite–garnet gneisses from the Sauwald Zone (Southern Bohemian Massif, Upper Austria): is there evidence for two independent late-Variscan low-P/high-T events in the Moldanubian Unit? , 2006 .

[29]  W. Schnabel,et al.  Geologische karte von Oberösterreich 1:200000 , 2006 .

[30]  L. Tajčmanová,et al.  The Role of Zinc in Stabilization of Spinel-Bearing Mineral Assemblages – Examples from the Bohemian Massif and NW Namibia , 2006 .

[31]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[32]  E. Hegner,et al.  Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic , 2005 .

[33]  D. Henry,et al.  The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms , 2005 .

[34]  K. Stüwe,et al.  Garnet zoning in high pressure granulite-facies metapelites, Mozambique belt, SE-Kenya: constraints on the cooling history , 2005 .

[35]  A. Benisek,et al.  New developments in two-feldspar thermometry , 2004 .

[36]  I. Fletcher,et al.  Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages , 2004 .

[37]  T. Evans A method for calculating effective bulk composition modification due to crystal fractionation in garnet‐bearing schist: implications for isopleth thermobarometry , 2004 .

[38]  B. N. Upreti,et al.  Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core , 2004 .

[39]  C. Pin,et al.  Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif , 2004, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[40]  F. Spear,et al.  Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions , 2003 .

[41]  F. Spear,et al.  Three-dimensional imaging of garnet porphyroblast sizes and chemical zoning: Nucleation and growth history in the garnet zone , 2003 .

[42]  T. Holland,et al.  Mixing properties of phengitic micas and revised garnet‐phengite thermobarometers , 2002 .

[43]  T. Gerya,et al.  Numerical modelling of PT-paths related to rapid exhumation of high-pressure rocks from the crustal root in the Variscan Erzgebirge Dome (Saxony/Germany) , 2002 .

[44]  R. Powell,et al.  Calculation of Phase Relations Involving Haplogranitic Melts Using an Internally Consistent Thermodynamic Dataset , 2001 .

[45]  R. Powell,et al.  Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) , 2001 .

[46]  A. Henk,et al.  Post‐collisional granite generation and HT–LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith , 2000, Journal of the Geological Society.

[47]  F. Corfu,et al.  Time calibration of a P–T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and the detection of inherited monazite , 2000 .

[48]  O. Oncken,et al.  Orogenic processes: quantification and modelling in the Variscan belt , 2000, Geological Society, London, Special Publications.

[49]  A. Henk,et al.  Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources , 2000, Geological Society, London, Special Publications.

[50]  P. O'Brien The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures , 2000, Geological Society, London, Special Publications.

[51]  W. Franke The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution , 2000, Geological Society, London, Special Publications.

[52]  A. Berger,et al.  Metamorphic Evolution of Cordierite-Bearing Migmatites from the Bayerische Wald (Variscan Belt, Germany) , 1999 .

[53]  R. Powell,et al.  Relating formulations of the thermodynamics of mineral solid solutions: Activity modeling of pyroxenes, amphiboles, and micas , 1999 .

[54]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[55]  E. Dachs PET: petrological elementary tools for Mathematica , 1998 .

[56]  J. Montel,et al.  Partial melting of metagreywackes, Part II. Compositions of minerals and melts , 1997 .

[57]  R. Berman,et al.  A new garnet-orthopyroxene thermometer based on reversed Al2O3 solubility in FeO-Al2O3-SiO2 orthopyroxene , 1997 .

[58]  J. Ganguly,et al.  Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications , 1996 .

[59]  R. Berman,et al.  Optimized standard state and solution properties of minerals , 1996 .

[60]  A. Provost,et al.  Electron microprobe dating of monazite , 1996 .

[61]  P. O'Brien,et al.  Eclogites with a short-lived granulite facies overprint in the Moldanubian Zone, Czech Republic: petrology, geochemistry and diffusion modelling of garnet zoning , 1995 .

[62]  F. Finger,et al.  Migmatization and “secondary” granitic magmas: effects of emplacement and crystallization of “primary” granitoids in Southern Bohemia, Austria , 1995 .

[63]  Bluemel,et al.  Moldanubian zone - metamorphic evolution , 1995 .

[64]  K. Weber,et al.  Pre-Permian Geology of Central and Eastern Europe , 1995 .

[65]  R. K. Lal Internally consistent recalibrations of mineral equilibria for geothermobarometry involving garnet–orthopyroxene–plagioclase–quartz assemblages and their application to the South Indian granulites , 1993 .

[66]  P. O'Brien,et al.  Thermobarometry and Geotectonic Significance of High-Pressure Granulites: Examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria , 1993 .

[67]  A. Kröner,et al.  Evidence from zircon dating for existence of approximately 2.1 Ga old crystalline basement in southern Bohemia, Czech Republic , 1993 .

[68]  R. Berry,et al.  Internally consistent gahnitic spinel-cordierite-garnet equilibria in the FMASHZn system: geothermobarometry and applications , 1992 .

[69]  Robert G. Berman,et al.  THERMOBAROMETRY USING MULTI-EOUILIBRIUM CALCULATIONS: A NEW TECHNIOUE, WITH PETROLOGICAL APPLICATIONS- , 1991 .

[70]  R. Powell,et al.  A Compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600°C , 1991 .

[71]  Kazuhiro Suzuki,et al.  Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan : Th-U-total Pb evidence from an electron microprobe monazite study , 1991 .

[72]  L. Perchuk Progress in metamorphic and magmatic petrology: Derivation of a thermodynamically consistent set of geothermometers and geobarometers for metamorphic and magmatic rocks , 1991 .

[73]  D. S. Korzhinskiĭ,et al.  Progress in metamorphic and magmatic petrology : a memorial volume in honor of D.S. Korzhinskiy , 1991 .

[74]  S. Dasgupta,et al.  An orthopyroxene–biotite geothermometer and its application in crustal granulites and mantle-derived rocks , 1990 .

[75]  T. Hoisch,et al.  Empirical calibration of six geobarometers for the mineral assemblage quartz+muscovite+biotite+plagioclase+garnet , 1990 .

[76]  S. Bohlen,et al.  The Stability of Hercynite and Hercynite-Gahnite Spinels in Corundum- or Quartz-Bearing Assemblages , 1989 .

[77]  S. Harley The origins of granulites: a metamorphic perspective , 1989, Geological Magazine.

[78]  W. Franke Tectonostratigraphic units in the Variscan belt of central Europe , 1989 .

[79]  I. Wendt,et al.  U-Pb zircon and Sm-Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia , 1988 .

[80]  R. Berman,et al.  Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-F , 1988 .

[81]  S. Bohlen Pressure-Temperature-Time Paths and a Tectonic Model for the Evolution of Granulites , 1987, The Journal of Geology.

[82]  B. Hensen Theoretical phase relations involving cordierite and garnet revisited: the influence of oxygen fugacity on the stability of sapphirine and spinel in the system Mg-Fe-Al-Si-O , 1986 .

[83]  B. Grauert,et al.  Geochronology of a polymetamorphic and anatectic gneiss region: The moldanubicum of the area Lam-Deggendorf, eastern Bavaria, Germany , 1974 .

[84]  F. Kossmat Gliederung des varistischen Gebirgsbaues , 1927 .