How to Solve It: Modern Heuristics

I What Are the Ages of My Three Sons?.- 1 Why Are Some Problems Difficult to Solve?.- II How Important Is a Model?.- 2 Basic Concepts.- III What Are the Prices in 7-11?.- 3 Traditional Methods - Part 1.- IV What Are the Numbers?.- 4 Traditional Methods - Part 2.- V What's the Color of the Bear?.- 5 Escaping Local Optima.- VI How Good Is Your Intuition?.- 6 An Evolutionary Approach.- VII One of These Things Is Not Like the Others.- 7 Designing Evolutionary Algorithms.- VIII What Is the Shortest Way?.- 8 The Traveling Salesman Problem.- IX Who Owns the Zebra?.- 9 Constraint-Handling Techniques.- X Can You Tune to the Problem?.- 10 Tuning the Algorithm to the Problem.- XI Can You Mate in Two Moves?.- 11 Time-Varying Environments and Noise.- XII Day of the Week of January 1st.- 12 Neural Networks.- XIII What Was the Length of the Rope?.- 13 Fuzzy Systems.- XIV Everything Depends on Something Else.- 14 Coevolutionary Systems.- XV Who's Taller?.- 15 Multicriteria Decision-Making.- XVI Do You Like Simple Solutions?.- 16 Hybrid Systems.- 17 Summary.- Appendix A: Probability and Statistics.- A.1 Basic concepts of probability.- A.2 Random variables.- A.2.1 Discrete random variables.- A.2.2 Continuous random variables.- A.3 Descriptive statistics of random variables.- A.4 Limit theorems and inequalities.- A.5 Adding random variables.- A.6 Generating random numbers on a computer.- A.7 Estimation.- A.8 Statistical hypothesis testing.- A.9 Linear regression.- A.10 Summary.- Appendix B: Problems and Projects.- B.1 Trying some practical problems.- B.2 Reporting computational experiments with heuristic methods.- References.

[1]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[2]  Jim Smith,et al.  Adaptively Parameterised Evolutionary Systems: Self-Adaptive Recombination and Mutation in a Genetic Algorithm , 1996, PPSN.

[3]  David B. Fogel,et al.  Inductive reasoning and bounded rationality reconsidered , 1999, IEEE Trans. Evol. Comput..

[4]  Terence C. Fogarty,et al.  Learning the local search range for genetic optimisation in nonstationary environments , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[5]  Philippe Collard,et al.  Genetic Algorithms at the Edge of a Dream , 1997, Artificial Evolution.

[6]  Marco Budinich,et al.  A Self-Organizing Neural Network for the Traveling Salesman Problem That Is Competitive with Simulated Annealing , 1996, Neural Computation.

[7]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[8]  R R Kampfner,et al.  Computational modeling of evolutionary learning processes in the brain. , 1983, Bulletin of mathematical biology.

[9]  A. E. Eiben,et al.  Orgy in the Computer: Multi-Parent Reproduction in Genetic Algorithms , 1995, ECAL.

[10]  Eric R. Ziegel,et al.  Probability and Statistics for Engineering and the Sciences , 2004, Technometrics.

[11]  E. E. Universitygusz Multi-parent Recombination , 1997 .

[12]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[13]  Zbigniew Michalewicz,et al.  Modeling of ship trajectory in collision situations by an evolutionary algorithm , 2000, IEEE Trans. Evol. Comput..

[14]  Samir W. Mahfoud Boltzmann selection , 2018, Evolutionary Computation 1.

[15]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[16]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[17]  K. Mellanby How Nature works , 1978, Nature.

[18]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.

[19]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[20]  William M. Spears,et al.  Simulated annealing for hard satisfiability problems , 1993, Cliques, Coloring, and Satisfiability.

[21]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[22]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[23]  William M. Spears,et al.  Simple Subpopulation Schemes , 1998 .

[24]  F. Greene A method for utilizing diploid/dominance in genetic search , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[25]  Alice E. Smith,et al.  Genetic Optimization Using A Penalty Function , 1993, ICGA.

[26]  L. Darrell Whitley,et al.  Genetic Operators, the Fitness Landscape and the Traveling Salesman Problem , 1992, PPSN.

[27]  David B. Fogel,et al.  Evolutionary Computation: The Fossil Record , 1998 .

[28]  Graham Kendall,et al.  An evolutionary approach for the tuning of a chess evaluation function using population dynamics , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[29]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[30]  Jim Smith,et al.  Self adaptation of mutation rates in a steady state genetic algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[31]  R. Hinterding,et al.  Gaussian mutation and self-adaption for numeric genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[32]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[33]  Christopher K. Riesbeck,et al.  Inside Case-Based Reasoning , 1989 .

[34]  B. R. Fox,et al.  Genetic Operators for Sequencing Problems , 1990, FOGA.

[35]  Michael J. Todd,et al.  Mathematical programming , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[36]  John J. Grefenstette,et al.  Case-Based Initialization of Genetic Algorithms , 1993, ICGA.

[37]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[38]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[39]  David B. Fogel,et al.  A Preliminary Investigation into Directed Mutations in Evolutionary Algorithms , 1996, PPSN.

[40]  S. Louis,et al.  Genetic Algorithms for Open Shop Scheduling and Re-scheduling , 1996 .

[41]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[42]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[43]  Alexander Schrijver,et al.  Handbook of Critical Issues in Goal Programming , 1992 .

[44]  A. E. Eiben,et al.  Solving constraint satisfaction problems using genetic algorithms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[45]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[46]  David B. Fogel,et al.  A note on representations and variation operators , 1997, IEEE Trans. Evol. Comput..

[47]  Hans-Georg Beyer,et al.  The Dynamics of Evolution Strategies in the Optimization of Traveling Salesman Problems , 1997, Evolutionary Programming.

[48]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[49]  Jordan B. Pollack,et al.  Co-Evolution in the Successful Learning of Backgammon Strategy , 1998, Machine Learning.

[50]  Zbigniew Michalewicz,et al.  Heuristic methods for evolutionary computation techniques , 1996, J. Heuristics.

[51]  Darrell Whitley,et al.  The Travelling Salesman and Sequence Scheduling: Quality Solutions using Genetic Edge Recombination , 1990 .

[52]  Michael M. Skolnick,et al.  Using Genetic Algorithms in Engineering Design Optimization with Non-Linear Constraints , 1993, ICGA.

[53]  Lawrence Davis,et al.  Shall We Repair? Genetic AlgorithmsCombinatorial Optimizationand Feasibility Constraints , 1993, ICGA.

[54]  W. Martin,et al.  Population Structures C 6 . 3 Island ( migration ) models : evolutionary algorithms based on punctuated equilibria , 1997 .

[55]  Selim G. Akl,et al.  Design and analysis of parallel algorithms , 1985 .

[56]  L. Darrell Whitley,et al.  A Comparison of Genetic Sequencing Operators , 1991, ICGA.

[57]  Tony White,et al.  Adaptive Crossover Using Automata , 1994, PPSN.

[58]  Zbigniew Michalewicz,et al.  An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms , 1991, ICGA.

[59]  Jordan B. Pollack,et al.  Coevolution of a Backgammon Player , 1996 .

[60]  J. W. Atmar,et al.  Speculation on the evolution of intelligence and its possible realization in machine form. , 1976 .

[61]  Howard Kaufman,et al.  An Experimental Investigation of Process Identification by Competitive Evolution , 1967, IEEE Trans. Syst. Sci. Cybern..

[62]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[63]  Richard K. Belew,et al.  Methods for Competitive Co-Evolution: Finding Opponents Worth Beating , 1995, ICGA.

[64]  J. Reed,et al.  Simulation of biological evolution and machine learning. I. Selection of self-reproducing numeric patterns by data processing machines, effects of hereditary control, mutation type and crossing. , 1967, Journal of theoretical biology.

[65]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[66]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[67]  M. K. Luhandjula Fuzzy optimization: an appraisal , 1989 .

[68]  Gennady M Verkhivker,et al.  Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. , 1995, Chemistry & biology.

[69]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[70]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[71]  A. E. Eiben,et al.  Genetic algorithms with multi-parent recombination , 1994, PPSN.

[72]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[73]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[74]  Craig W. Reynolds Competition, Coevolution and the Game of Tag , 1994 .

[75]  David B. Fogel,et al.  Evolving an expert checkers playing program without using human expertise , 2001, IEEE Trans. Evol. Comput..

[76]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[77]  Zbigniew Michalewicz,et al.  Analysis and modeling of control tasks in dynamic systems , 2002, IEEE Trans. Evol. Comput..

[78]  Hugh M. Cartwright,et al.  Looking Around: Using Clues from the Data Space to Guide Genetic Algorithm Searches , 1991, ICGA.

[79]  James Bowen,et al.  Solving small and large scale constraint satisfaction problems using a heuristic-based microgenetic algorithm , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[80]  Z. Michalewicz Genetic Algorithms , Numerical Optimization , and Constraints , 1995 .

[81]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[82]  A. Wiles Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .

[83]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[84]  Kenneth A. De Jong,et al.  Using Genetic Algorithms to Solve NP-Complete Problems , 1989, ICGA.

[85]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[86]  J. Michael Steele Probabilistic Algorithm for the Directed Traveling Salesman Problem , 1986, Math. Oper. Res..

[87]  Kok Cheong Wong,et al.  A New Diploid Scheme and Dominance Change Mechanism for Non-Stationary Function Optimization , 1995, ICGA.

[88]  Zbigniew Michalewicz,et al.  Evolutionary optimization of constrained problems , 1994 .

[89]  Worthy N. Martin,et al.  Enhancing GA Performance through Crossover Prohibitions Based on Ancestry , 1995, International Conference on Genetic Algorithms.

[90]  Hajime Kita,et al.  Adaptation to Changing Environments by Means of the Memory Based Thermodynamical Genetic Algorithm , 1997, ICGA.

[91]  J. van Leeuwen,et al.  Evolutionary Multi-Criterion Optimization , 2003, Lecture Notes in Computer Science.

[92]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[93]  Christopher R. Stephens,et al.  "Optimal" mutation rates for genetic search , 2006, GECCO.

[94]  Robert Axelrod,et al.  The Evolution of Strategies in the Iterated Prisoner's Dilemma , 2001 .

[95]  Hans-Paul Schwefel,et al.  Evolutionary Programming and Evolution Strategies: Similarities and Differences , 1993 .

[96]  Peter J. Angeline,et al.  Tracking Extrema in Dynamic Environments , 1997, Evolutionary Programming.

[97]  Robert E. Smith,et al.  Adaptively Resizing Populations: An Algorithm and Analysis , 1993, ICGA.

[98]  Lawrence Davis,et al.  Applying Adaptive Algorithms to Epistatic Domains , 1985, IJCAI.

[99]  Frada Burstein,et al.  A framework for case-based fuzzy multicriteria decision support for tropical cyclone forecasting , 2003, 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the.

[100]  Zbigniew Michalewicz,et al.  GAVaPS-a genetic algorithm with varying population size , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[101]  Heinz Mühlenbein,et al.  Evolution algorithms in combinatorial optimization , 1988, Parallel Comput..

[102]  Kumar Chellapilla,et al.  On Making Problems Evolutionarily Friendly - Part 1: Evolving the Most Convenient Representations , 1998, Evolutionary Programming.

[103]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[104]  Hajime Kita,et al.  A genetic solution for the traveling salesman problem by means of a thermodynamical selection rule , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[105]  Zbigniew Michalewicz,et al.  Searching for optima in non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[106]  T K,et al.  Analysing Spider Web-building Behaviour with Rule-based Simulations and Genetic Algorithms , 1997 .

[107]  Emile H. L. Aarts,et al.  Genetic Local Search Algorithms for the Travelling Salesman Problem , 1990, PPSN.

[108]  Jan Paredis,et al.  The Symbiotic Evolution of Solutions and Their Representations , 1995, International Conference on Genetic Algorithms.

[109]  Roger Eriksson,et al.  Applying Cooperative Coevolution To Inventory Control Parameter Optimization , 1996 .

[110]  Z. Michalewicz,et al.  Your brains and my beauty: parent matching for constrained optimisation , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[111]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[112]  Thomas Bäck,et al.  Empirical Investigation of Multiparent Recombination Operators in Evolution Strategies , 1997, Evolutionary Computation.

[113]  Thomas Bäck,et al.  Selective Pressure in Evolutionary Algorithms: A Characterization of Selection Mechanisms , 1994, International Conference on Evolutionary Computation.

[114]  David B. Fogel,et al.  Exploring Self-Adaptive Methods to Improve the Efficiency of Generating Approximate Solutions to Travelling Salesman Problems Using Evolutionary Programming , 1997, Evolutionary Programming.

[115]  George H. Burgin,et al.  COMPETITIVE GOAL-SEEKING THROUGH EVOLUTIONARY?PROGRAMMING. , 1969 .

[116]  C. G. Shaefer,et al.  The ARGOT Strategy: Adaptive Representation Genetic Optimizer Technique , 1987, ICGA.

[117]  M. Conrad,et al.  Evolution experiments with an artificial ecosystem. , 1970, Journal of theoretical biology.

[118]  L. Darrell Whitley,et al.  Scheduling Problems and Traveling Salesmen: The Genetic Edge Recombination Operator , 1989, International Conference on Genetic Algorithms.

[119]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[120]  Andy J. Keane,et al.  A brief comparison of some evolutionary optimization methods , 1996 .

[121]  David E. Goldberg,et al.  Nonstationary Function Optimization Using Genetic Algorithms with Dominance and Diploidy , 1987, ICGA.

[122]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[123]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[124]  Kalyanmoy Deb,et al.  Accounting for Noise in the Sizing of Populations , 1992, FOGA.

[125]  R. Eriksson,et al.  Cooperative Coevolution in Inventory Control Optimisation , 1997, ICANNGA.

[126]  James Bowen,et al.  Solving Constraint Satisfaction Problems Using a Genetic/Systematic Search Hybrid That Realizes When to Quit , 1995, ICGA.

[127]  Charles C. Palmer,et al.  Representing trees in genetic algorithms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[128]  Kalyanmoy Deb,et al.  Don't Worry, Be Messy , 1991, ICGA.

[129]  Hajime Kita,et al.  Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm , 1996, PPSN.

[130]  Peter J. Angeline,et al.  Adaptive and Self-adaptive Evolutionary Computations , 1995 .

[131]  R. E. Wheeler Statistical distributions , 1983, APLQ.

[132]  Piero Mussio,et al.  Toward a Practice of Autonomous Systems , 1994 .

[133]  Dirk Van Gucht,et al.  Incorporating Heuristic Information into Genetic Search , 1987, International Conference on Genetic Algorithms.

[134]  Xin Yao,et al.  Simultaneous training of negatively correlated neural networks in an ensemble , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[135]  Dirk Thierens,et al.  Toward a Better Understanding of Mixing in Genetic Algorithms , 1993 .

[136]  Joanna Lis,et al.  Parallel genetic algorithm with the dynamic control parameter , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[137]  P MüllerJörg Architectures and applications of intelligent agents: A survey , 1999 .

[138]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[139]  Annie S. Wu,et al.  Empirical Observations on the Roles of Crossover and Mutation , 1997, ICGA.

[140]  Dimitri P. Bertsekas,et al.  Dynamic Programming: Deterministic and Stochastic Models , 1987 .

[141]  John Knox,et al.  Tabu search performance on the symmetric traveling salesman problem , 1994, Comput. Oper. Res..

[142]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[143]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[144]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[145]  Xin Yao,et al.  An Analysis of Evolutionary Algorithms Based on Neighborhood and Step Sizes , 1997, Evolutionary Programming.

[146]  Antonia J. Jones,et al.  Evolutionary Divide and Conquer (I): A Novel Genetic Approach to the TSP , 1993, Evolutionary Computation.

[147]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[148]  Reinhard Männer,et al.  Towards an Optimal Mutation Probability for Genetic Algorithms , 1990, PPSN.

[149]  Stan Wagon,et al.  Which way did the bicycle go , 1996 .

[150]  Vasant Dhar,et al.  Integer programming vs. expert systems: an experimental comparison , 1990, CACM.

[151]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[152]  Jordan B. Pollack,et al.  What Makes a Good Co-Evolutionary Learning Environment? , 1997 .

[153]  John D. Litke,et al.  An improved solution to the traveling salesman problem with thousands of nodes , 1984, CACM.

[154]  D. Fogel An evolutionary approach to the traveling salesman problem , 1988, Biological Cybernetics.

[155]  Schloss Birlinghoven Evolution in Time and Space -the Parallel Genetic Algorithm , 1991 .

[156]  Zbigniew Michalewicz,et al.  A Nonstandard Genetic Algorithm for the Nonlinear Transportation Problem , 1991, INFORMS J. Comput..

[157]  Gunar E. Liepins,et al.  A New Approach on the Traveling Salesman Problem by Genetic Algorithms , 1993, ICGA.

[158]  Zbigniew Michalewicz,et al.  GENOCOP: a genetic algorithm for numerical optimization problems with linear constraints , 1996, CACM.

[159]  O P Judson,et al.  The rise of the individual-based model in ecology. , 1994, Trends in ecology & evolution.

[160]  Raphael T. Haftka,et al.  A Segregated Genetic Algorithm for Constrained Structural Optimization , 1995, ICGA.

[161]  J. D. Schaffer,et al.  Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .

[162]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[163]  Francisco Herrera,et al.  Direct approach processes in group decision making using linguistic OWA operators , 1996, Fuzzy Sets Syst..

[164]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[165]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[166]  Lawrence Davis,et al.  Job Shop Scheduling with Genetic Algorithms , 1985, ICGA.

[167]  D. J. Smith,et al.  A Study of Permutation Crossover Operators on the Traveling Salesman Problem , 1987, ICGA.

[168]  Jan Paredis,et al.  Co-evolutionary Constraint Satisfaction , 1994, PPSN.

[169]  A. E. Eiben,et al.  Multi-Parent's Niche: n-ary Crossovers on NK-Landscapes , 1996, PPSN.

[170]  James Bowen,et al.  Solving randomly generated constraint satisfaction problems using a micro-evolutionary hybrid that evolves a population of hill-climbers , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[171]  Larry J. Eshelman,et al.  Crossover's Niche , 1993, ICGA.

[172]  Michael A. Shanblatt,et al.  A two-phase optimization neural network , 1992, IEEE Trans. Neural Networks.

[173]  David B. Fogel,et al.  Using fitness distributions to design more efficient evolutionary computations , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[174]  Michael P. Fourman,et al.  Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.

[175]  Xin Yao,et al.  Why more choices cause less cooperation in iterated prisoner's dilemma , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[176]  Thomas S. Ray,et al.  An Approach to the Synthesis of Life , 1991 .

[177]  Jano I. van Hemert,et al.  Graph Coloring with Adaptive Evolutionary Algorithms , 1998, J. Heuristics.

[178]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[179]  David Applegate,et al.  Finding Cuts in the TSP (A preliminary report) , 1995 .

[180]  Zbigniew Michalewicz,et al.  Evolutionary Computation at the Edge of Feasibility , 1996, PPSN.

[181]  L. Darrell Whitley,et al.  Remapping Hyperspace During Genetic Search: Canonical Delta Folding , 1992, FOGA.

[182]  L. Darrell Whitley,et al.  Building Better Test Functions , 1995, ICGA.

[183]  Lino A. Costa,et al.  An Adaptive Sharing Elitist Evolution Strategy for Multiobjective Optimization , 2003, Evolutionary Computation.

[184]  B. Freisleben,et al.  Genetic local search for the TSP: new results , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[185]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[186]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[187]  Atidel B. Hadj-Alouane,et al.  A dual genetic algorithm for bounded integer programs James C. Bean, Atidel Ben Hadj-Alouane. , 1993 .

[188]  G. Rudolph On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[189]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[190]  James P. Kelly,et al.  Large-scale controlled rounding using tabu search with strategic oscillation , 1993, Ann. Oper. Res..

[191]  Kalyanmoy Deb,et al.  Analysis of Selection Algorithms: A Markov Chain Approach , 1996, Evolutionary Computation.

[192]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[193]  W. Norton,et al.  Extinction: bad genes or bad luck? , 1991, New scientist.

[194]  John Daniel. Bagley,et al.  The behavior of adaptive systems which employ genetic and correlation algorithms : technical report , 1967 .

[195]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[196]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[197]  Anne Brindle,et al.  Genetic algorithms for function optimization , 1980 .

[198]  T. Soule,et al.  Code Size and Depth Flows in Genetic Programming , 1997 .

[199]  Martina Gorges-Schleuter,et al.  Application of Genetic Algorithms to Task Planning and Learning , 1992, Parallel Problem Solving from Nature.

[200]  Nelson Minar,et al.  The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations , 1996 .

[201]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[202]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[203]  Fiona Badey,et al.  A night to remember. , 1995, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[204]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[205]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[206]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[207]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[208]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[209]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[210]  Dirk Thierens Dimensional Analysis of Allele-Wise Mixing Revisited , 1996, PPSN.

[211]  D. Fogel Applying evolutionary programming to selected traveling salesman problems , 1993 .

[212]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[213]  Jeffrey Horn,et al.  Multiobjective Optimization Using the Niched Pareto Genetic Algorithm , 1993 .

[214]  Peter Ross,et al.  Cost Based Operator Rate Adaption: An Investigation , 1996, PPSN.

[215]  박철훈,et al.  Genetic Algorithm를 이용한 Traveling Salesman Problem 해법 , 1992 .

[216]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[217]  Michael D. Vose,et al.  Modeling Simple Genetic Algorithms , 1995, Evolutionary Computation.

[218]  David B. Fogel,et al.  Evolving artificial neural networks for screening features from mammograms , 1998, Artif. Intell. Medicine.

[219]  W. Arthur Inductive Reasoning and Bounded Rationality , 1994 .

[220]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[221]  Ian Stewart,et al.  A Puzzle for Pirates , 1999 .

[222]  R. Rosenberg Simulation of genetic populations with biochemical properties : technical report , 1967 .

[223]  David M Stein SCHEDULING DIAL-A-RIDE TRANSPORTATION SYSTEMS: AN ASYMPTOTIC APPROACH , 1977 .

[224]  M. Ehrgott Multiobjective Optimization , 2008, AI Mag..

[225]  Alice E. Smith,et al.  Expected Allele Coverage and the Role of Mutation in Genetic Algorithms , 1993, ICGA.

[226]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[227]  Xin Yao,et al.  Evolutionary ensembles with negative correlation learning , 2000, IEEE Trans. Evol. Comput..

[228]  Nicholas J. Radcliffe,et al.  Equivalence Class Analysis of Genetic Algorithms , 1991, Complex Syst..

[229]  Zbigniew Michalewicz,et al.  A Hierarchy of Evolution Programs: An Experimental Study , 1993, Evolutionary Computation.

[230]  A. Fréville,et al.  Heuristics and reduction methods for multiple constraints 0-1 linear programming problems , 1986 .

[231]  Panos M. Pardalos,et al.  Recent Advances in Global Optimization , 1991 .

[232]  A. E. Eiben,et al.  Self-adaptivity for constraint satisfaction: learning penalty functions , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[233]  David B. Fogel,et al.  Evolving Behaviors in the Iterated Prisoner's Dilemma , 1993, Evolutionary Computation.

[234]  Peter J. Angeline,et al.  The Effects of Noise on Self-Adaptive Evolutionary Optimization , 1996, Evolutionary Programming.

[235]  R. Hinterding Self-adaptation using multi-chromosomes , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[236]  A. Wiles,et al.  Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .

[237]  Zbigniew Michalewicz,et al.  Self-Adaptive Genetic Algorithm for Numeric Functions , 1996, PPSN.

[238]  R. Fullér OWA Operators in Decision Making , 2003 .

[239]  Kurt Hornik,et al.  Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks , 1990, Neural Networks.

[240]  David B. Fogel,et al.  Evolutionary programming for ASAT battle management , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[241]  R. Faure,et al.  Introduction to operations research , 1968 .

[242]  David B. Fogel An information criterion for optimal neural network selection , 1991, IEEE Trans. Neural Networks.

[243]  D. Fogel,et al.  Evolving continuous behaviors in the Iterated Prisoner's Dilemma. , 1996, Bio Systems.

[244]  L. Darrell Whitley,et al.  GENITOR II: a distributed genetic algorithm , 1990, J. Exp. Theor. Artif. Intell..

[245]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[246]  L. Darrell Whitley,et al.  The Traveling Salesrep Problem, Edge Assembly Crossover, and 2-opt , 1998, PPSN.

[247]  Zbigniew Michalewicz,et al.  Coevolutionary TEMPO game , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[248]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.

[249]  Jan Paredis,et al.  Genetic State-Space Search for Constrained Optimization Problems , 1993, IJCAI.

[250]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[251]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[252]  F. Greene Performance of Diploid Dominance with Genetically Synthesized Signal Processing Networks , 1997, ICGA.

[253]  Thomas M. English,et al.  Evaluation of Evolutionary and Genetic Optimizers: No Free Lunch , 1996, Evolutionary Programming.

[254]  Laura I. Burke,et al.  Neural methods for the traveling salesman problem: Insights from operations research , 1994, Neural Networks.

[255]  David B. Fogel,et al.  An Evolutionary Programming Approach to Self-Adaptation on Finite State Machines , 1995, Evolutionary Programming.

[256]  Günter Rudolph,et al.  A cellular genetic algorithm with self-adjusting acceptance threshold , 1995 .

[257]  Martina Gorges-Schleuter,et al.  ASPARAGOS An Asynchronous Parallel Genetic Optimization Strategy , 1989, ICGA.

[258]  Hyun Myung,et al.  Preliminary Investigations into a Two-State Method of Evolutionary Optimization on Constrained Problems , 1995, Evolutionary Programming.

[259]  Bull,et al.  An Overview of Genetic Algorithms: Part 2, Research Topics , 1993 .

[260]  A.E. Eiben,et al.  Competing crossovers in an adaptive GA framework , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[261]  Christoph Endres,et al.  Introduction to Artificial Life , 2000, Künstliche Intell..

[262]  David B. Fogel,et al.  New results on evolving strategies in chess , 2004, SPIE Optics + Photonics.

[263]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[264]  Bryant A. Julstrom,et al.  What Have You Done for Me Lately? Adapting Operator Probabilities in a Steady-State Genetic Algorithm , 1995, ICGA.

[265]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[266]  David B. Beasley,et al.  An overview of genetic algorithms: Part 1 , 1993 .

[267]  William M. Spears,et al.  Adapting Crossover in Evolutionary Algorithms , 1995, Evolutionary Programming.

[268]  Lawrence Davis,et al.  Bit-Climbing, Representational Bias, and Test Suite Design , 1991, ICGA.

[269]  W. Daniel Hillis,et al.  Co-evolving parasites improve simulated evolution as an optimization procedure , 1990 .

[270]  E. Bonomi,et al.  The N-City Travelling Salesman Problem: Statistical Mechanics and the Metropolis Algorithm , 1984 .

[271]  Robert G. Reynolds,et al.  Solving problems in hierarchically structured systems using cultural algorithms , 1993 .

[272]  P. Campbell How to Solve It: A New Aspect of Mathematical Method , 2005 .

[273]  George E. P. Box,et al.  Evolutionary Operation: a Method for Increasing Industrial Productivity , 1957 .

[274]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[275]  David H. Wolpert,et al.  Bandit problems and the exploration/exploitation tradeoff , 1998, IEEE Trans. Evol. Comput..

[276]  Zbigniew Michalewicz,et al.  A Decoder-Based Evolutionary Algorithm for Constrained Parameter Optimization Problems , 1998, PPSN.

[277]  Terence C. Fogarty,et al.  A Genetic Algorithm with Variable Range of Local Search for Tracking Changing Environments , 1996, PPSN.

[278]  Zbigniew Michalewicz,et al.  A Note on Usefulness of Geometrical Crossover for Numerical Optimization Problems , 1996, Evolutionary Programming.

[279]  G. Rudolph Evolutionary Search under Partially Ordered Fitness Sets , 2001 .

[280]  G. Clarke,et al.  Scheduling of Vehicles from a Central Depot to a Number of Delivery Points , 1964 .

[281]  Andrzej Osyczka,et al.  Evolutionary Algorithms for Single and Multicriteria Design Optimization , 2001 .

[282]  Kumar Chellapilla,et al.  Combining mutation operators in evolutionary programming , 1998, IEEE Trans. Evol. Comput..

[283]  Edmund M. A. Ronald,et al.  When Selection Meets Seduction , 1995, ICGA.

[284]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[285]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition : methods that search for structures in data , 1992 .

[286]  Yanchun Liang,et al.  Solving traveling salesman problems by genetic algorithms , 2003 .

[287]  David B. Fogel,et al.  Gaining Insight into Evolutionary Programming Through Landscape Visualization: An Investigation into IIR Filtering , 1997, Evolutionary Programming.

[288]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[289]  S. Esquivel,et al.  Multiple Crossover Per Couple in genetic algorithms , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[290]  Emma Hart,et al.  A Comparison of Dominance Mechanisms and Simple Mutation on Non-stationary Problems , 1998, PPSN.

[291]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[292]  Robert G. Reynolds,et al.  Evolutionary Programming VI , 1997, Lecture Notes in Computer Science.

[293]  Zbigniew Michalewicz,et al.  Adaptive evolutionary planner/navigator for mobile robots , 1997, IEEE Trans. Evol. Comput..

[294]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[295]  Darrell Whitley,et al.  Genitor: a different genetic algorithm , 1988 .

[296]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[297]  Xin Yao,et al.  Ensemble learning via negative correlation , 1999, Neural Networks.

[298]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[299]  Peter J. Angeline,et al.  Evolving predictors for chaotic time series , 1998, Defense, Security, and Sensing.

[300]  Zbigniew Michalewicz,et al.  Evolutionary Computation Techniques for Nonlinear Programming Problems , 1994 .

[301]  Z. Michalewicz,et al.  Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[302]  Jan Paredis,et al.  Exploiting Constraints as Background Knowledge for Genetic Algorithms: A Case-Study for Scheduling , 1992, PPSN.

[303]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .

[304]  David S. Johnson,et al.  Local Optimization and the Traveling Salesman Problem , 1990, ICALP.

[305]  A. E. Eiben,et al.  Adaptive Penalties for Evolutionary Graph Coloring , 1997, Artificial Evolution.

[306]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[307]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[308]  David E. Goldberg,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.

[309]  János C. Fodor,et al.  Characterization of the ordered weighted averaging operators , 1995, IEEE Trans. Fuzzy Syst..

[310]  James C. Bean,et al.  A Genetic Algorithm for the Multiple-Choice Integer Program , 1997, Oper. Res..

[311]  Zbigniew Michalewicz,et al.  Evolutionary algorithms for constrained engineering problems , 1996, Computers & Industrial Engineering.

[312]  R. Bland,et al.  Large travelling salesman problems arising from experiments in X-ray crystallography: A preliminary report on computation , 1989 .

[313]  D B Fogel,et al.  Evolving neural networks for detecting breast cancer. , 1995, Cancer letters.

[314]  L. Darrell Whitley,et al.  Lamarckian Evolution, The Baldwin Effect and Function Optimization , 1994, PPSN.

[315]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[316]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[317]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[318]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[319]  Walter L. Smith Probability and Statistics , 1959, Nature.

[320]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[321]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[322]  Kaj Madsen,et al.  A new branch-and-bound method for global optimization , 1998 .

[323]  Zbigniew Michalewicz,et al.  Towards understanding constraint-handling methods in evolutionary algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[324]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[325]  Thomas Bäck,et al.  A Superior Evolutionary Algorithm for 3-SAT , 1998, Evolutionary Programming.

[326]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[327]  E. Thorndike On the Organization of Intellect. , 1921 .

[328]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[329]  Günter Rudolph,et al.  Convergence of evolutionary algorithms in general search spaces , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[330]  Jing Xiao,et al.  Adding memory to the Evolutionary Planner/Navigator , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[331]  M. Dorigo,et al.  1 Positive Feedback as a Search Strategy , 1991 .

[332]  Alan D. BlairDept Co-evolutionary learning : lessons for human education ? , 1998 .

[333]  J. W. Atmar,et al.  Comparing genetic operators with gaussian mutations in simulated evolutionary processes using linear systems , 1990, Biological Cybernetics.

[334]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[335]  Michael D. Vose,et al.  Modeling genetic algorithms with Markov chains , 1992, Annals of Mathematics and Artificial Intelligence.

[336]  Dirk Van Gucht,et al.  The effects of population size, heuristic crossover and local improvement on a genetic algorithm for the traveling salesman problem , 1989 .

[337]  Joe Suzuki A Markov Chain Analysis on A Genetic Algorithm , 1993, ICGA.

[338]  Stefano Nolfi,et al.  God Save the Red Queen! Competition in Co-Evolutionary Robotics , 1997 .

[339]  D. Fogel,et al.  A comparison of methods for self-adaptation in evolutionary algorithms. , 1995, Bio Systems.

[340]  Donald L. DeAngelis,et al.  An individual-based approach to predicting density-dependent dynamics in smallmouth bass populations☆ , 1991 .

[341]  Thomas Bäck,et al.  Intelligent Mutation Rate Control in Canonical Genetic Algorithms , 1996, ISMIS.

[342]  G. Syswerda,et al.  Schedule Optimization Using Genetic Algorithms , 1991 .

[343]  Shigenobu Kobayashi,et al.  Edge Assembly Crossover: A High-Power Genetic Algorithm for the Travelling Salesman Problem , 1997, ICGA.

[344]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[345]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[346]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[347]  Zbigniew Michalewicz,et al.  A PATCHWORK model for evolutionary algorithms with structured and variable size populations , 1999 .

[348]  Keith L. Downing EUZONE: Simulating the Evolution of Aquatic Ecosystems , 1997, Artificial Life.

[349]  David B. Fogel,et al.  Evolution, neural networks, games, and intelligence , 1999, Proc. IEEE.

[350]  David S. Johnson,et al.  Asymptotic experimental analysis for the Held-Karp traveling salesman bound , 1996, SODA '96.

[351]  Richard M. Karp,et al.  Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..

[352]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[353]  Risto Miikkulainen,et al.  Continual Coevolution Through Complexification , 2002, GECCO.

[354]  Zbigniew Michalewicz,et al.  Using Cultural Algorithms for Constraint Handling in GENOCOP , 1995, Evolutionary Programming.