The method of Bregman projections in deterministic and stochastic convex feasibility problems
暂无分享,去创建一个
[1] Heinz H. Bauschke,et al. Bregman Monotone Optimization Algorithms , 2003, SIAM J. Control. Optim..
[2] Inderjit S. Dhillon,et al. Matrix Nearness Problems with Bregman Divergences , 2007, SIAM J. Matrix Anal. Appl..
[3] Heinz H. Bauschke,et al. Iterating Bregman Retractions , 2002, SIAM J. Optim..
[4] L. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .
[5] R. Durrett. Probability: Measure Theory , 2010 .
[6] Peter Richtárik,et al. Randomized Iterative Methods for Linear Systems , 2015, SIAM J. Matrix Anal. Appl..
[7] Jérôme Idier,et al. Algorithms for Nonnegative Matrix Factorization with the β-Divergence , 2010, Neural Computation.
[8] D. Butnariu,et al. Convergence of Bregman Projection Methods for Solving Consistent Convex Feasibility Problems in Reflexive Banach Spaces , 1997 .
[9] Marc Teboulle,et al. Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..
[10] Frank Deutsch,et al. The Method of Alternating Orthogonal Projections , 1992 .
[11] Peter Richtárik,et al. Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory , 2017, SIAM J. Matrix Anal. Appl..
[12] Per-Gunnar Martinsson,et al. Randomized Numerical Linear Algebra: Foundations & Algorithms , 2020, ArXiv.
[13] Marco Cuturi,et al. Computational Optimal Transport: With Applications to Data Science , 2019 .
[14] Alfredo N. Iusem,et al. Iterative Methods of Solving Stochastic Convex Feasibility Problems and Applications , 2000, Comput. Optim. Appl..
[15] P. L. Combettes. The foundations of set theoretic estimation , 1993 .
[16] Nicolas Papadakis,et al. Regularized Optimal Transport and the Rot Mover's Distance , 2016, J. Mach. Learn. Res..
[17] Philip A. Knight,et al. The Sinkhorn-Knopp Algorithm: Convergence and Applications , 2008, SIAM J. Matrix Anal. Appl..
[18] C. Castaing,et al. Convex analysis and measurable multifunctions , 1977 .
[19] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[20] Patrick L. Combettes,et al. Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections , 1997, IEEE Trans. Image Process..
[21] Heinz H. Bauschke,et al. Bregman distances and Chebyshev sets , 2007, J. Approx. Theory.
[22] Frank Nielsen,et al. Tsallis Regularized Optimal Transport and Ecological Inference , 2016, AAAI.
[23] L. Rüschendorf. Convergence of the iterative proportional fitting procedure , 1995 .
[24] Jason Altschuler,et al. Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration , 2017, NIPS.
[25] R. Vershynin,et al. A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.
[26] Y. Censor,et al. An iterative row-action method for interval convex programming , 1981 .
[27] Babak Hassibi,et al. Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization , 2018, ICLR.
[28] R. Durrett. Probability: Theory and Examples , 1993 .
[29] Alfredo N. Iusem. On Dual Convergence and the Rate of Primal Convergence of Bregman's Convex Programming Method , 1991, SIAM J. Optim..
[30] Peter Richtárik,et al. Randomized Projection Methods for Convex Feasibility: Conditioning and Convergence Rates , 2019, SIAM J. Optim..
[31] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[32] Heinz H. Bauschke,et al. Legendre functions and the method of random Bregman projections , 1997 .
[33] D. Butnariu,et al. Strong convergence of expected-projection methods in hilbert spaces , 1995 .
[34] Deanna Needell,et al. Adaptive Sketch-and-Project Methods for Solving Linear Systems , 2019, ArXiv.
[35] Heinz H. Bauschke,et al. ESSENTIAL SMOOTHNESS, ESSENTIAL STRICT CONVEXITY, AND LEGENDRE FUNCTIONS IN BANACH SPACES , 2001 .
[36] Gabriel Peyré,et al. Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..
[37] D. R. Luke,et al. Random Function Iterations for Consistent Stochastic Feasibility , 2018, Numerical Functional Analysis and Optimization.
[38] Y. Censor,et al. Parallel Optimization:theory , 1997 .
[39] Angelia Nedic,et al. Random projection algorithms for convex set intersection problems , 2010, 49th IEEE Conference on Decision and Control (CDC).
[40] H. Robbins,et al. A Convergence Theorem for Non Negative Almost Supermartingales and Some Applications , 1985 .
[41] David W. Hosmer,et al. Applied Logistic Regression , 1991 .