Results with an apparatus for pressurized planar electrochromatography.
暂无分享,去创建一个
Pressurized planar electrochromatography (PPEC) is a fast and efficient planar chromatographic technique. The mobile phase is driven by electroosmotic flow, while the system is pressurized in a manner that allows heat to flow between the sorbent layer and the pressurizing medium. The reproducibility of solute retention was not satisfactory in the initial report describing PPEC. In the current report, this reproducibility is improved by better control of several experimental variables. The pressure at which PPEC is performed is now free of drift, and the temperature at which the layer is preconditioned is maintained to within +/-1 degrees C. The best reproducibility of retention is obtained when the plate is soaked in the mobile phase for a defined time before each run. In the original prototype, the temperature of the sorbent layer was not controlled. In the present apparatus, water, at a constant temperature between 3 and 60 degrees C, is circulated through channels in the two die blocks that pressurize the layer. The highest efficiency is obtained at an intermediate temperature. This behavior is ascribed to high resistance to mass transfer at the lower temperatures and increased diffusion at higher temperatures. Efficiency, as measured by the number of theoretical plates, increases with increasing migration distance. The height equivalent of a theoretical plate diminishes with increasing migration distance, and values as low as 0.0106 mm are obtained under appropriate conditions. This extrapolates to 94 000 plates/m. Manual spotting was used in this report. Evidence is presented that substantially better efficiency would be obtained if the initial spot size were smaller. The efficiency of PPEC in its current form is illustrated by a chromatogram showing the separation of nine solutes in 2 min. PPEC was also performed with TLC plates in a back-to-back configuration, and this doubles the number of samples that can be simultaneously separated.