Quantum annealing for systems of polynomial equations

Numerous scientific and engineering applications require numerically solving systems of equations. Classically solving a general set of polynomial equations requires iterative solvers, while linear equations may be solved either by direct matrix inversion or iteratively with judicious preconditioning. However, the convergence of iterative algorithms is highly variable and depends, in part, on the condition number. We present a direct method for solving general systems of polynomial equations based on quantum annealing, and we validate this method using a system of second-order polynomial equations solved on a commercially available quantum annealer. We then demonstrate applications for linear regression, and discuss in more detail the scaling behavior for general systems of linear equations with respect to problem size, condition number, and search precision. Finally, we define an iterative annealing process and demonstrate its efficacy in solving a linear system to a tolerance of 10−8.

[1]  Andreas Stathopoulos,et al.  Extending the eigCG algorithm to non-symmetric linear systems with multiple right-hand sides , 2009, 0911.2285.

[2]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[3]  J. Biamonte Non−perturbative k−body to two−body commuting conversion Hamiltonians and embedding problem instances into Ising spins , 2008, 0801.3800.

[4]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[5]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[6]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[7]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[8]  Travis S. Humble,et al.  An integrated programming and development environment for adiabatic quantum optimization , 2013, 1309.3575.

[9]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[10]  Helmut G. Katzgraber,et al.  A deceptive step towards quantum speedup detection , 2017, Quantum Science and Technology.

[11]  Endre Boros,et al.  On quadratization of pseudo-Boolean functions , 2012, ISAIM.

[12]  M. A. Clark,et al.  A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics , 2018, Nature.

[13]  Helmut G. Katzgraber,et al.  Chaos in spin glasses revealed through thermal boundary conditions , 2015, 1505.06222.

[14]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[15]  Bálint Joó,et al.  Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[16]  Nikesh S. Dattani,et al.  Quadratization in discrete optimization and quantum mechanics , 2019, ArXiv.

[17]  Ming-Cheng Chen,et al.  Solving Systems of Linear Equations with a Superconducting Quantum Processor. , 2017, Physical review letters.

[18]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[19]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[20]  A. FROMMER,et al.  Adaptive Aggregation-Based Domain Decomposition Multigrid for the Lattice Wilson-Dirac Operator , 2013, SIAM J. Sci. Comput..

[21]  Ray,et al.  Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations. , 1989, Physical review. B, Condensed matter.

[22]  Samuel J. Lomonaco,et al.  Analyzing the Quantum Annealing Approach for Solving Linear Least Squares Problems , 2018, WALCOM.

[23]  Travis S. Humble,et al.  Adiabatic quantum programming: minor embedding with hard faults , 2012, Quantum Information Processing.

[24]  D. Averin,et al.  Decoherence in adiabatic quantum computation , 2007, 0708.0384.

[25]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[26]  R. Somma,et al.  Quantum algorithms for linear systems of equations inspired by adiabatic quantum computing , 2018 .

[27]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[28]  R C Brower,et al.  Adaptive multigrid algorithm for lattice QCD. , 2007, Physical review letters.

[29]  Firas Hamze,et al.  Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.

[30]  Guilu Long,et al.  Experimental realization of quantum algorithms for a linear system inspired by adiabatic quantum computing , 2018, Physical Review A.

[31]  Alejandro Perdomo-Ortiz,et al.  Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches , 2016, 1604.01746.

[32]  M. Luscher Local coherence and deflation of the low quark modes in lattice QCD , 2007, 0706.2298.

[33]  R. Somma,et al.  Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing. , 2018, Physical review letters.

[34]  N. Dattani,et al.  Reducing multi-qubit interactions in adiabatic quantum computation without adding auxiliary qubits. Part 1: The "deduc-reduc" method and its application to quantum factorization of numbers , 2015, ArXiv.

[35]  Richard Tanburn,et al.  Reducing multi-qubit interactions in adiabatic quantum computation without adding auxiliary qubits. Part 1: The "deduc-reduc" method and its application to quantum factorization of numbers , 2015, ArXiv.

[36]  Hidetoshi Nishimori,et al.  Retrieving the ground state of spin glasses using thermal noise: Performance of quantum annealing at finite temperatures. , 2016, Physical review. E.

[37]  Johanna S. Hardin,et al.  A method for generating realistic correlation matrices , 2011, 1106.5834.

[38]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[39]  Daniel A. Lidar,et al.  Decoherence in adiabatic quantum computation , 2015, 1503.08767.

[40]  Andreas Stathopoulos,et al.  Computing and Deflating Eigenvalues While Solving Multiple Right-Hand Side Linear Systems with an Application to Quantum Chromodynamics , 2007, SIAM J. Sci. Comput..

[41]  Eleanor G. Rieffel,et al.  Thermalization, Freeze-out, and Noise: Deciphering Experimental Quantum Annealers , 2017, 1703.03902.

[42]  N. Dattani,et al.  Reducing multi-qubit interactions in adiabatic quantum computation without adding auxiliary qubits. Part 2: The"split-reduc"method and its application to quantum determination of Ramsey numbers , 2015, 1508.07190.

[43]  A. Stathopoulos,et al.  Computing and deflating eigenvalues while solving multiple right hand side linear systems in Quantum Chromodynamics , 2008 .