Gas storage and separation in a water-stable [Cu(I)5BTT3](4-) anion framework comprising a giant multi-prismatic nanoscale cage.

A novel water-stable open poly-nuclear Cu(I)-based metal-organic framework, [NC2H8]4Cu5(BTT)3·xG (G = guest of DMA and H2O) (1), featuring a giant multi-prismatic nanoscale cage and high CO2/N2 and CO2/H2 sorption selectivities, was successfully assembled by using the nitrogen-rich ligand of 1,3,5-tris(2H-tetrazol-5-yl)benzene (H3BTT) to bridge two types of Cu3 and Cu2 clusters.

[1]  Zafer Kahveci,et al.  Application of pyrene-derived benzimidazole-linked polymers to CO2 separation under pressure and vacuum swing adsorption settings , 2014 .

[2]  Zhiyong Lu,et al.  A nitro-decorated NbO-type metal–organic framework with a highly selective CO2 uptake and CH4 storage capacity , 2014 .

[3]  Xiang Zhu,et al.  Efficient CO₂ capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. , 2014, Chemical communications.

[4]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[5]  Tony Pham,et al.  A robust molecular porous material with high CO2 uptake and selectivity. , 2013, Journal of the American Chemical Society.

[6]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[7]  Yongxin Li,et al.  A Rationally Designed Nitrogen-Rich Metal-Organic Framework and Its Exceptionally High CO2 and H2 Uptake Capability , 2013, Scientific Reports.

[8]  Randall Q. Snurr,et al.  Structure–property relationships of porous materials for carbon dioxide separation and capture , 2012 .

[9]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[10]  A. Samanta,et al.  Post-Combustion CO2 Capture Using Solid Sorbents: A Review , 2012 .

[11]  P. Feng,et al.  Single-walled polytetrazolate metal-organic channels with high density of open nitrogen-donor sites and gas uptake. , 2012, Journal of the American Chemical Society.

[12]  C. Serre,et al.  An evaluation of UiO-66 for gas-based applications. , 2011, Chemistry, an Asian journal.

[13]  D. D’Alessandro,et al.  Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri , 2011 .

[14]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[15]  J. Silvestre-Albero,et al.  Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. , 2011, Chemical communications.

[16]  B. Smit,et al.  Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. , 2011, Journal of the American Chemical Society.

[17]  Marta G. Plaza,et al.  Post-combustion CO2 capture with a commercial activated carbon: Comparison of different regeneration strategies , 2010 .

[18]  Chongli Zhong,et al.  Exceptional CO2 Capture Capability and Molecular-Level Segregation in a Li-Modified Metal−Organic Framework , 2010 .

[19]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[20]  Jianwen Jiang,et al.  A bio-metal-organic framework for highly selective CO(2) capture: A molecular simulation study. , 2010, ChemSusChem.

[21]  J. J. Pis,et al.  On the limits of CO2 capture capacity of carbons , 2010 .

[22]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[23]  D. Caputo,et al.  Modeling Carbon Dioxide Adsorption on Microporous Substrates: Comparison between Cu-BTC Metal-Organic Framework and 13X Zeolitic Molecular Sieve , 2010 .

[24]  Craig M. Brown,et al.  Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods , 2010 .

[25]  Jun Kim,et al.  Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. , 2010, Dalton transactions.

[26]  M. P. Suh,et al.  Stepwise and hysteretic sorption of N(2), O(2), CO(2), and H(2) gases in a porous metal-organic framework [Zn(2)(BPnDC)(2)(bpy)]. , 2010, Chemical communications.

[27]  Jianwen Jiang,et al.  Unprecedentedly high selective adsorption of gas mixtures in rho zeolite-like metal-organic framework: a molecular simulation study. , 2009, Journal of the American Chemical Society.

[28]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[29]  Krista S. Walton,et al.  A novel metal-organic coordination polymer for selective adsorption of CO2 over CH4. , 2009, Chemical communications.

[30]  Randall Q. Snurr,et al.  Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification , 2009 .

[31]  Aldo Steinfeld,et al.  CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor , 2009 .

[32]  P. Webley,et al.  Competition of CO2/H2O in adsorption based CO2 capture , 2009 .

[33]  L. Broadbelt,et al.  Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[34]  Jun Zhang,et al.  Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas , 2008 .

[35]  Jun Zhang,et al.  Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X , 2008 .

[36]  R. Steeneveldt,et al.  CO2 Capture and Storage: Closing the Knowing–Doing Gap , 2006 .

[37]  Chongli Zhong,et al.  Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[38]  F. Geyer,et al.  Journal of , 1993 .

[39]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .