Simulations of the photoelectron sheath and dust levitation on the lunar surface

[1] The lunar surface represents a complex plasma environment due to the presence of solar ultraviolet (UV) radiation, the incoming solar wind flux and charged, levitated micron- and sub-micron sized dust particles. Photoemission due to solar UV radiation dominates the charging environment, creating a photoelectron sheath above the lunar surface. To further investigate the dusty plasma environment on the surface of the Moon, a one-dimensional particle-in-cell (PIC) code has been designed specifically for the lunar surface. The code has been validated against analytic solutions for photoelectron sheaths with basic photoelectron energy distributions. Simulations have focused on the role of the emitted photoelectron energy distribution and solar UV variability in determining the sheath profile. Additionally, the charging and levitation of test dust particles in the photoelectron sheath are studied. Limits on the maximum size and height of levitated dust grains are also presented.

[1]  R. Guernsey,et al.  Potential distribution surrounding a photo-emitting, plate in a dilute plasma , 1970 .

[2]  M. Horányi,et al.  Dust transport in photoelectron layers and the formation of dust ponds on Eros , 2005 .

[3]  S. Auer,et al.  Preliminary results of a cosmic dust experiment on the Moon , 1974 .

[4]  Kazushi Asamura,et al.  Solar wind proton reflection at the lunar surface: Low energy ion measurement by MAP‐PACE onboard SELENE (KAGUYA) , 2008 .

[5]  Edward Walbridge,et al.  Lunar photoelectron layer , 1973 .

[6]  Phillip C. Chamberlin,et al.  Variability of the lunar photoelectron sheath and dust mobility due to solar activity , 2008 .

[7]  O. Havnes,et al.  Dynamics of dust in a plasma sheath and injection of dust into the plasma sheath above Moon and asteroidal surfaces , 1992 .

[8]  T. Northrop,et al.  Equilibrium electric potential of spherical, cylindrical, and planar dust grains moving through a plasma , 1996 .

[9]  D. Criswell,et al.  Intense localized photoelectric charging in the lunar sunset terminator region, 2. Supercharging at the progression of sunset , 1977 .

[10]  O. Havnes,et al.  Levitation and dynamics of a collection of dust particles in a fully ionized plasma sheath , 1994 .

[11]  R. J. L. Grard,et al.  Photoemission from lunar surface fines and the lunar photoelectron sheath , 1972 .

[12]  R. Grard,et al.  Brief Reports Photoelectron Sheath near a Planar Probe in Interplanetary Space , 1971 .

[13]  W. Farrell,et al.  A Dynamic Fountain Model for Lunar Dust , 2005 .

[14]  William M. Farrell,et al.  Complex electric fields near the lunar terminator: The near‐surface wake and accelerated dust , 2007 .

[15]  M. Horányi,et al.  Dust grain charging and levitation in a weakly collisional sheath , 2003 .

[16]  M. Horányi,et al.  Experimental levitation of dust grains in a plasma sheath , 2002 .

[17]  M. Horányi,et al.  Photoelectric charging of dust particles in vacuum. , 2000, Physical review letters.

[18]  E. Whipple,et al.  Potentials of surfaces in space , 1981 .

[19]  J. Freeman,et al.  Lunar electric fields, surface Potential and Associated Plasma Sheaths , 1975 .

[20]  B. Feuerbacher,et al.  Photoemission and secondary electron emission from lunar surface material , 1973 .

[21]  H. Zook,et al.  Large scale lunar horizon glow and a high altitude lunar dust exosphere , 1991 .

[22]  D. R. Criswell,et al.  Surveyor observations of lunar horizon-glow , 1974 .

[23]  Edward A. West,et al.  Lunar dust charging by photoelectric emissions , 2007 .

[24]  Mihaly Horanyi,et al.  Experimental investigations on photoelectric and triboelectric charging of dust , 2001 .

[25]  D. Criswell,et al.  Intense localized photoelectric charging in the lunar sunset terminator region, 1. Development of potentials and fields , 1977 .

[26]  T. Tajima,et al.  Book Review: Plasma physics via computer simulation. C.K. Birdsall and A.B. Langdon, McGraw-Hill, New York, 1985. xxiii + 479 pages. US $45 , 1986 .

[27]  O. Havnes,et al.  Levitation and dynamics of charged dust in the photoelectron sheath above surfaces in space , 1998 .

[28]  T. Woods,et al.  New flare model using recent measurements of the solar ultraviolet irradiance , 2008 .

[29]  Xu Wang,et al.  Experiments on dust transport in plasma to investigate the origin of the lunar horizon glow , 2009 .

[30]  Edward A. West,et al.  Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains , 2006 .

[31]  D. Criswell Lunar dust motion. , 1972 .

[32]  U. Mall,et al.  Charging and motion of dust grains near the terminator of the moon , 2006 .

[33]  J. Goree,et al.  Dust release from surfaces exposed to plasma , 2006 .

[34]  Mihaly Horanyi,et al.  CHARGED DUST DYNAMICS IN THE SOLAR SYSTEM , 1996 .

[35]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[36]  S. Robertson,et al.  Lunar Dust Levitation , 2009 .