Small atoms fall into bulk from non-close-packed metal surfaces?

[1]  Lukas Kesper,et al.  Tracing the structural evolution of quasi-freestanding germanene on Ag(111) , 2022, Scientific Reports.

[2]  S. Ono Two-Dimensional Ionic Crystals: The Cases of IA-VII Alkali Halides and IA-IB CsAu , 2022, Journal of the Physical Society of Japan.

[3]  I. Abrikosov,et al.  Machine learning prediction of thermodynamic and mechanical properties of multicomponent Fe-Cr-based alloys , 2021, Physical Review Materials.

[4]  H. Sohail,et al.  Atomic and electronic structures of the Au2Sn surface alloy on Au(111) , 2021, Physical Review B.

[5]  T. Cui,et al.  Design Principles for High-Temperature Superconductors with a Hydrogen-Based Alloy Backbone at Moderate Pressure. , 2021, Physical review letters.

[6]  M. Araidai,et al.  In-plane strain-free stanene on a Pd2Sn(111) surface alloy , 2021 .

[7]  T. Ozaki,et al.  Densest ternary sphere packings. , 2021, Physical review. E.

[8]  M. Kawamura,et al.  Diverse densest binary sphere packings and phase diagram. , 2021, Physical review. E.

[9]  F. Ishii,et al.  Simple Model for Corrugation in Surface Alloys Based on First-Principles Calculations , 2020, Materials.

[10]  V. Singh,et al.  Electronic structure of Au-Sn compounds grown on Au(111) , 2019, Physical Review B.

[11]  A. Smirnov,et al.  Hard-Sphere Close-Packing Models: Possible Applications for Developing Promising Ceramic and Refractory Materials (Review) , 2019, Glass and Ceramics.

[12]  Ruijie Zhang,et al.  An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction , 2018 .

[13]  A. Soon,et al.  Ab initio Surface Phase Diagram of Sn / Cu ( 001 ) : Reconciling Experiments with Theory , 2017 .

[14]  L. Weston,et al.  Machine learning the band gap properties of kesterite I2−II−IV−V4 quaternary compounds for photovoltaics applications , 2017, Physical Review Materials.

[15]  Wei Chen,et al.  Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning , 2016, npj Computational Materials.

[16]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[17]  A. D. Corso Pseudopotentials periodic table: From H to Pu , 2014 .

[18]  S. Förster,et al.  Surface reconstruction of Au(001): High-resolution real-space and reciprocal-space inspection , 2014 .

[19]  J. Osiecki,et al.  Alloying of Sn in the surface layer of Ag(111) , 2013 .

[20]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[21]  R. Belkhou,et al.  Adsorption of silicon on Au(110): An ordered two dimensional surface alloy , 2012, 1302.3703.

[22]  Yousef Saad,et al.  Data mining for materials: Computational experiments with AB compounds , 2012 .

[23]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[24]  R. Egdell,et al.  Observation of a surface alloying-to-dealloying transition during growth of Bi on Ag(111) , 2011 .

[25]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[26]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[27]  Asifullah Khan,et al.  Lattice constant prediction of cubic and monoclinic perovskites using neural networks and support vector regression , 2010 .

[28]  Matthias Scheffler,et al.  Large-scale surface reconstruction energetics of Pt(100) and Au(100) by all-electron density functional theory , 2010, 1004.3948.

[29]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[30]  S. Imada,et al.  Electron correlation and magnetic properties ofc(2×2)CuMn∕Cu(001)two-dimensional surface alloys , 2007 .

[31]  Ding-sheng Wang,et al.  A phenomenological explanation for the buckling of surface alloys , 2007 .

[32]  D. P. Woodruff,et al.  Alloying-induced surface stress change in Cu (100) c (2×2) -Mn , 2005 .

[33]  Wondong Kim,et al.  Growth and atomic structure of ordered Mn surface alloys on Au(001) , 2002 .

[34]  D. P. Woodruff,et al.  Structure determination of surface adsorption and surface alloy phases using medium energy ion scattering , 2001 .

[35]  P. Schieffer,et al.  Evidence ofc(2×2)antiferromagnetic order of Mn in an ideal monolayer on Ag(001) , 2000 .

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  B. Koel,et al.  Structural studies of SnPt(100) surfaces: conditions for alloy formation , 1995 .

[38]  Gauthier,et al.  Magnetically driven buckling and stability of ordered surface alloys: Cu(100)c(2 x 2)Mn. , 1993, Physical review letters.

[39]  Ku,et al.  Formation of stable, two-dimensional alloy-surface phases: Sn on Cu(111), Ni(111), and Pt(111). , 1992, Physical review. B, Condensed matter.

[40]  Jensen,et al.  Dynamics of oxygen-induced reconstruction of Cu(100) studied by scanning tunneling microscopy. , 1990, Physical review. B, Condensed matter.

[41]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[42]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[43]  Enrico Clementi,et al.  Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons , 1967 .

[44]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .