Stochastic averaging and sensitivity analysis for two scale reaction networks.

In the presence of multiscale dynamics in a reaction network, direct simulation methods become inefficient as they can only advance the system on the smallest scale. This work presents stochastic averaging techniques to accelerate computations for obtaining estimates of expected values and sensitivities with respect to the steady state distribution. A two-time-scale formulation is used to establish bounds on the bias induced by the averaging method. Further, this formulation provides a framework to create an accelerated "averaged" version of most single-scale sensitivity estimation methods. In particular, we propose the use of a centered ergodic likelihood ratio method for steady state estimation and show how one can adapt it to accelerated simulations of multiscale systems. Finally, we develop an adaptive "batch-means" stopping rule for determining when to terminate the micro-equilibration process.

[1]  Bernd A. Berg Markov Chain Monte Carlo Simulations and Their Statistical Analysis , 2004 .

[2]  Dionisios G. Vlachos,et al.  Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory , 2013, BMC Bioinformatics.

[3]  Charles J. Geyer,et al.  Introduction to Markov Chain Monte Carlo , 2011 .

[4]  Ting Wang,et al.  Efficiency of the Girsanov Transformation Approach for Parametric Sensitivity Analysis of Stochastic Chemical Kinetics , 2014, SIAM/ASA J. Uncertain. Quantification.

[5]  Muruhan Rathinam,et al.  Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks. , 2010, The Journal of chemical physics.

[6]  Abhijit Chatterjee,et al.  An overview of spatial microscopic and accelerated kinetic Monte Carlo methods , 2007 .

[7]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[8]  Donald L. Iglehart,et al.  Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..

[9]  Journal of Chemical Physics , 1932, Nature.

[10]  Linda R Petzold,et al.  Efficient step size selection for the tau-leaping simulation method. , 2006, The Journal of chemical physics.

[11]  Can Huang,et al.  Strong Convergence and Speed up of Nested Stochastic Simulation Algorithm , 2014 .

[12]  David F Anderson,et al.  A modified next reaction method for simulating chemical systems with time dependent propensities and delays. , 2007, The Journal of chemical physics.

[13]  Qing Zhang,et al.  Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach , 2012 .

[14]  Christos Alexopoulos,et al.  Implementing the batch means method in simulation experiments , 1996, Winter Simulation Conference.

[15]  E Weinan,et al.  Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales , 2007, J. Comput. Phys..

[16]  Journal of Computer-Aided Materials Design , 2005 .

[17]  D G Vlachos,et al.  Overcoming stiffness in stochastic simulation stemming from partial equilibrium: a multiscale Monte Carlo algorithm. , 2005, The Journal of chemical physics.

[18]  D. Gillespie,et al.  Avoiding negative populations in explicit Poisson tau-leaping. , 2005, The Journal of chemical physics.

[19]  Yang Cao,et al.  Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems , 2005 .

[20]  P. B. Warren,et al.  Steady-state parameter sensitivity in stochastic modeling via trajectory reweighting. , 2012, The Journal of chemical physics.

[21]  David F. Anderson,et al.  An Efficient Finite Difference Method for Parameter Sensitivities of Continuous Time Markov Chains , 2011, SIAM J. Numer. Anal..

[22]  Jacob A. McGill,et al.  Efficient gradient estimation using finite differencing and likelihood ratios for kinetic Monte Carlo simulations , 2012, J. Comput. Phys..

[23]  T. Kurtz,et al.  Separation of time-scales and model reduction for stochastic reaction networks. , 2010, 1011.1672.

[24]  Muruhan Rathinam,et al.  A pathwise derivative approach to the computation of parameter sensitivities in discrete stochastic chemical systems. , 2012, The Journal of chemical physics.

[25]  M. Khammash,et al.  The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.

[26]  Muruhan Rathinam,et al.  Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method , 2003 .

[27]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[28]  Peter W. Glynn,et al.  Likelihood ratio gradient estimation for stochastic systems , 1990, CACM.

[29]  Markus Hegland,et al.  An optimal Finite State Projection Method , 2010, ICCS.

[30]  C. D. Meyer,et al.  Sensitivity of the stationary distribution vector for an ergodic Markov chain , 1986 .

[31]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[32]  Yannis Pantazis,et al.  Path-Space Information Bounds for Uncertainty Quantification and Sensitivity Analysis of Stochastic Dynamics , 2016, SIAM/ASA J. Uncertain. Quantification.

[33]  D G Vlachos,et al.  Steady state likelihood ratio sensitivity analysis for stiff kinetic Monte Carlo simulations. , 2015, The Journal of chemical physics.

[34]  Mustafa Khammash,et al.  An efficient and unbiased method for sensitivity analysis of stochastic reaction networks , 2014, Journal of The Royal Society Interface.

[35]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[36]  Yiannis Kaznessis,et al.  Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. , 2005, The Journal of chemical physics.

[37]  D. Vlachos,et al.  Binomial distribution based tau-leap accelerated stochastic simulation. , 2005, The Journal of chemical physics.

[38]  Elizabeth Skubak Wolf,et al.  Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems. , 2014, The Journal of chemical physics.

[39]  Adam P. Arkin,et al.  Efficient stochastic sensitivity analysis of discrete event systems , 2007, J. Comput. Phys..

[40]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[41]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[42]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[43]  M. Khammash,et al.  Sensitivity analysis for stochastic chemical reaction networks with multiple time-scales , 2013, 1310.1729.

[44]  V. Climenhaga Markov chains and mixing times , 2013 .

[45]  David F. Anderson,et al.  Continuous Time Markov Chain Models for Chemical Reaction Networks , 2011 .

[46]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[47]  Linda R Petzold,et al.  The slow-scale stochastic simulation algorithm. , 2005, The Journal of chemical physics.

[48]  K. Burrage,et al.  Binomial leap methods for simulating stochastic chemical kinetics. , 2004, The Journal of chemical physics.