PDE acceleration: a convergence rate analysis and applications to obstacle problems

This paper provides a rigorous convergence rate and complexity analysis for a recently introduced framework, called PDE acceleration, for solving problems in the calculus of variations, and explores applications to obstacle problems. PDE acceleration grew out of a variational interpretation of momentum methods, such as Nesterov's accelerated gradient method and Polyak's heavy ball method, that views acceleration methods as equations of motion for a generalized Lagrangian action. Its application to convex variational problems yields equations of motion in the form of a damped nonlinear wave equation rather than nonlinear diffusion arising from gradient descent. These accelerated PDE's can be efficiently solved with simple explicit finite difference schemes where acceleration is realized by an improvement in the CFL condition from $dt\sim dx^2$ for diffusion equations to $dt\sim dx$ for wave equations. In this paper, we prove a linear convergence rate for PDE acceleration for strongly convex problems, provide a complexity analysis of the discrete scheme, and show how to optimally select the damping parameter for linear problems. We then apply PDE acceleration to solve minimal surface obstacle problems, including double obstacles with forcing, and stochastic homogenization problems with obstacles, obtaining state of the art computational results.

[1]  Anthony J. Yezzi,et al.  Accelerated PDE's for efficient solution of regularized inversion problems , 2018, ArXiv.

[2]  H. Brezis,et al.  Methodes d'approximation et d'iteration pour les Operateurs Monotones , 2010 .

[3]  L. Evans,et al.  Partial Differential Equations , 1941 .

[4]  A. Hannukainen,et al.  An iterative method for elliptic problems with rapidly oscillating coefficients , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[5]  Anthony J. Yezzi,et al.  Variational PDEs for Acceleration on Manifolds and Application to Diffeomorphisms , 2018, NeurIPS.

[6]  Michael Breuß,et al.  Fast explicit diffiusion for long-time integration of parabolic problems , 2017 .

[7]  Dominique Zosso,et al.  A minimal surface criterion for graph partitioning , 2016 .

[8]  Thomas Y. Hou,et al.  An Accelerated Method for Nonlinear Elliptic PDE , 2016, J. Sci. Comput..

[9]  Tony F. Chan,et al.  Image Denoising Using Mean Curvature of Image Surface , 2012, SIAM J. Imaging Sci..

[10]  R. Woodard The Theorem of Ostrogradsky , 2015, 1506.02210.

[11]  Joachim Weickert,et al.  FSI Schemes: Fast Semi-Iterative Solvers for PDEs and Optimisation Methods , 2016, GCPR.

[12]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[13]  I. G. Kevrekidis,et al.  A Toolkit For Steady States of Nonlinear Wave Equations: Continuous Time Nesterov and Exponential Time Differencing Schemes , 2017, 1710.05047.

[14]  Yongmin Zhang,et al.  Multilevel projection algorithm for solving obstacle problems , 2001 .

[15]  L. Caffarelli The obstacle problem revisited , 1998 .

[16]  J. Ball The calculus of variations and materials science , 1998 .

[17]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[18]  Stanley Osher,et al.  An L1 Penalty Method for General Obstacle Problems , 2014, SIAM J. Appl. Math..

[19]  Mostafa Kaveh,et al.  Fourth-order partial differential equations for noise removal , 2000, IEEE Trans. Image Process..

[20]  Andre Wibisono,et al.  A variational perspective on accelerated methods in optimization , 2016, Proceedings of the National Academy of Sciences.

[21]  Fei Wang,et al.  An algorithm for solving the double obstacle problems , 2008, Appl. Math. Comput..

[22]  Xue-Cheng Tai,et al.  Rate of Convergence for some constraint decomposition methods for nonlinear variational inequalities , 2003, Numerische Mathematik.

[23]  K. Majava,et al.  A LEVEL SET METHOD FOR SOLVING FREE BOUNDARY PROBLEMS ASSOCIATED WITH OBSTACLES , 2003 .

[24]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[25]  Reinhard Scholz,et al.  Numerical solution of the obstacle problem by the penalty method , 1984, Computing.

[26]  X. Goudou,et al.  The gradient and heavy ball with friction dynamical systems: the quasiconvex case , 2008, Math. Program..

[27]  Stephen P. Boyd,et al.  A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights , 2014, J. Mach. Learn. Res..

[28]  S. Armstrong,et al.  Quantitative Stochastic Homogenization and Large-Scale Regularity , 2017, Grundlehren der mathematischen Wissenschaften.

[29]  Jeff Calder,et al.  Accelerated Variational PDEs for Efficient Solution of Regularized Inversion Problems , 2019, Journal of Mathematical Imaging and Vision.

[30]  Geoffrey E. Hinton,et al.  On the importance of initialization and momentum in deep learning , 2013, ICML.

[31]  Anthony J. Yezzi,et al.  Accelerated Optimization in the PDE Framework: Formulations for the Manifold of Diffeomorphisms , 2018, SIAM J. Imaging Sci..

[32]  Xue-Cheng Tai,et al.  Convergence Rate Analysis of a Multiplicative Schwarz Method for Variational Inequalities , 2003, SIAM J. Numer. Anal..

[33]  Carsten Carstensen,et al.  Convergence analysis of a conforming adaptive finite element method for an obstacle problem , 2007, Numerische Mathematik.

[34]  Joachim Weickert,et al.  Cyclic Schemes for PDE-Based Image Analysis , 2016, International Journal of Computer Vision.

[35]  H. Attouch,et al.  THE HEAVY BALL WITH FRICTION METHOD, I. THE CONTINUOUS DYNAMICAL SYSTEM: GLOBAL EXPLORATION OF THE LOCAL MINIMA OF A REAL-VALUED FUNCTION BY ASYMPTOTIC ANALYSIS OF A DISSIPATIVE DYNAMICAL SYSTEM , 2000 .

[36]  Karl Kunisch,et al.  Obstacle Problems with Cohesion: A Hemivariational Inequality Approach and Its Efficient Numerical Solution , 2011, SIAM J. Optim..

[37]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[38]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[39]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[40]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[41]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[42]  R. Hoppe Multigrid Algorithms for Variational Inequalities , 1987 .

[43]  Xue-Cheng Tai,et al.  A Fast Algorithm for Euler's Elastica Model Using Augmented Lagrangian Method , 2011, SIAM J. Imaging Sci..

[44]  Claes Johnson,et al.  ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .

[45]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[46]  Stanley Osher,et al.  An Efficient Primal-Dual Method for the Obstacle Problem , 2017, Journal of Scientific Computing.

[47]  Ham Brezis,et al.  Méthodes d'approximation et d'itération pour les opérateurs monotones , 1968 .

[48]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[49]  Anthony J. Yezzi,et al.  Accelerated Optimization in the PDE Framework: Formulations for the Active Contour Case , 2017, ArXiv.

[50]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .