An atomistic-based boundary element method for the reduction of molecular statics models

Abstract We propose a new reduced computational model, called atomistic-based boundary element model (ABEM), derived from a full atomistic model for a crystalline solid system. The procedure is based on a domain decomposition method, which allows the separation of the atoms near crystal defects from the surrounding region, in which the displacement of the atoms is smooth. A reduction method, which is similar to the boundary integral method for continuum models, is developed to eliminate the atoms in the surrounding region. The reduction procedure gives rise to a system of equations only involving the atoms at the remote boundary and at the boundaries of the atomistic regions containing local defects. In this paper, we will discuss the derivation of the model, the implementation, and further reduction methods. We also present applications to some test problems.

[1]  C. Woodward,et al.  Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. , 2002, Physical review letters.

[2]  P. Martinsson,et al.  Fast multiscale methods for lattice equations , 2002 .

[3]  Izabela Szlufarska,et al.  Atomistic simulations of nanoindentation , 2006 .

[4]  M. Ortiz,et al.  A Theory of Anharmonic Lattice Statics for Analysis of Defective Crystals , 2006 .

[5]  A. N. Stroh Dislocations and Cracks in Anisotropic Elasticity , 1958 .

[6]  Eduard G. Karpov,et al.  Domain reduction method for atomistic simulations , 2006, J. Comput. Phys..

[7]  T. C. T. Ting,et al.  Anisotropic Elasticity: Theory and Applications , 1996 .

[8]  Weinan E,et al.  Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems , 2007 .

[9]  A. Voter,et al.  Three-dimensional fracture via large-scale molecular dynamics , 1998 .

[10]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[11]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[12]  David M. Barnett,et al.  The precise evaluation of derivatives of the anisotropic elastic Green's functions , 1972 .

[13]  E Weinan,et al.  Uniform Accuracy of the Quasicontinuum Method , 2006, MRS Online Proceedings Library.

[14]  Xiantao Li,et al.  Efficient boundary conditions for molecular statics models of solids , 2009 .

[15]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[16]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[17]  T. A. Cruse,et al.  Numerical solutions in three dimensional elastostatics , 1969 .

[18]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[19]  Lattice Green function for extended defect calculations: Computation and error estimation with long-range forces , 2006, cond-mat/0607388.

[20]  Christoph Ortner,et al.  Stability, Instability, and Error of the Force-based Quasicontinuum Approximation , 2009, 0903.0610.

[21]  Diana Farkas,et al.  Molecular Statics Simulation Of Crack Propagation In A-Fe Using Eam Potentials , 1995 .

[22]  Harold S. Park,et al.  Multiscale boundary conditions in crystalline solids: Theory and application to nanoindentation , 2006 .

[23]  P. C. Gehlen,et al.  Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling , 1978 .

[24]  J. Thomas Beale,et al.  A Method for Computing Nearly Singular Integrals , 2000, SIAM J. Numer. Anal..

[25]  Pingbing Ming,et al.  Analysis of a One-Dimensional Nonlocal Quasi-Continuum Method , 2009, Multiscale Model. Simul..

[26]  Thomas A. Cruse,et al.  An improved boundary-integral equation method for three dimensional elastic stress analysis , 1974 .

[27]  Pavel B. Bochev,et al.  On Atomistic-to-Continuum Coupling by Blending , 2008, Multiscale Model. Simul..

[28]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[29]  M. Ortiz,et al.  Effect of indenter-radius size on Au(001) nanoindentation. , 2003, Physical review letters.

[30]  Vidar Thomée,et al.  Elliptic difference equations and interior regularity , 1968 .

[31]  John C. Strikwerda,et al.  Interior Regularity Estimates for Elliptic Systems of Difference Equations , 1983 .

[32]  T. Cruse,et al.  Boundary-integral equation analysis of cracked anisotropic plates , 1975 .

[33]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[34]  Endre Süli,et al.  Stress-based atomistic/continuum coupling : a new variant of the quasicontinuum approximation , 2011 .

[35]  M. A. Dokainish,et al.  Simulation of the (001) plane crack in α-iron employing a new boundary scheme , 1982 .

[36]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[37]  J. Simmons,et al.  Green's function boundary conditions in two-dimensional and three-dimensional atomistic simulations of dislocations , 1998 .

[38]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[39]  Vinod K. Tewary,et al.  Green-function method for lattice statics , 1973 .

[40]  Per-Gunnar Martinsson,et al.  Asymptotic expansions of lattice Green's functions , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[42]  P. Ming,et al.  Error estimate of force-based quasicontinuous method , 2008 .

[43]  Pavel B. Bochev,et al.  Connecting Atomistic-to-Continuum Coupling and Domain Decomposition , 2008, Multiscale Model. Simul..