Quo vadis biofuels

[1]  Oliver Richard Inderwildi,et al.  In-silico investigations in heterogeneous catalysis--combustion and synthesis of small alkanes. , 2008, Chemical Society reviews.

[2]  L. Lynd,et al.  Fuel Ethanol from Cellulosic Biomass , 1991, Science.

[3]  A. Faaij,et al.  Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification , 2002 .

[4]  H. Raheman,et al.  Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process , 2007 .

[5]  J. Fierro,et al.  New catalytic routes for syngas and hydrogen production , 1996 .

[6]  J. Fierro,et al.  Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. , 2007, Chemical reviews.

[7]  Nigel P. Brandon,et al.  Hydrogen and fuel cells: Towards a sustainable energy future , 2008 .

[8]  M. Reuter,et al.  Response to Comment on "Genetically Determined Differences in Learning from Errors" , 2008, Science.

[9]  D. Tilman,et al.  Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass , 2006, Science.

[10]  S. Polasky,et al.  Land Clearing and the Biofuel Carbon Debt , 2008, Science.

[11]  L. Lynd,et al.  Consolidated bioprocessing of cellulosic biomass: an update. , 2005, Current opinion in biotechnology.

[12]  Yan Lin,et al.  Ethanol fermentation from biomass resources: current state and prospects , 2006, Applied Microbiology and Biotechnology.

[13]  J. Spivey,et al.  Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. , 2007, Chemical Society reviews.

[14]  Andrew D. Jones,et al.  Supporting Online Material for: Ethanol Can Contribute To Energy and Environmental Goals , 2006 .

[15]  W. Wiseman,et al.  Gulf of Mexico Hypoxia, A.K.A. “The Dead Zone” , 2002 .

[16]  J. E. Cohen,et al.  Plants and population: is there time? , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Natalia N. Ivanova,et al.  Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite , 2007, Nature.

[18]  T. W. Jeffries,et al.  Bacteria engineered for fuel ethanol production: current status , 2003, Applied Microbiology and Biotechnology.

[19]  D. King Climate Change Science: Adapt, Mitigate, or Ignore? , 2004, Science.

[20]  Jacinto F. Fabiosa,et al.  Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change , 2008, Science.

[21]  Anders Holmen,et al.  A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts , 2008 .

[22]  Ye Sun,et al.  Hydrolysis of lignocellulosic materials for ethanol production: a review. , 2002, Bioresource technology.

[23]  Keith A. Smith,et al.  N 2 O release from agro-biofuel production negates global warming reduction by replacing fossil fuels , 2007 .

[24]  D. King,et al.  Mechanistic studies of hydrocarbon combustion and synthesis on noble metals. , 2008, Angewandte Chemie.

[25]  Hans Schulz,et al.  Short history and present trends of Fischer–Tropsch synthesis , 1999 .

[26]  S. Pavlostathis,et al.  Kinetics of anaerobic treatment: A critical review , 1991 .

[27]  T. Carlson,et al.  Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. , 2008, ChemSusChem.

[28]  V. Dale,et al.  Biofuels: Effects on Land and Fire , 2008, Science.

[29]  J. Gressel Transgenics are imperative for biofuel crops , 2008 .

[30]  M. Mittelbach,et al.  Jatropha curcas L. as a source for the production of biofuel in Nicaragua , 1996 .

[31]  Ronald M. Heck,et al.  Environmental catalysis into the 21st century , 2000 .