Formation of a porous alumina electrode as a low-cost CMOS neuronal interface

Abstract A low-cost electrode design has been devised for drug discovery pharmacology, neural interface systems, cell-based biosensors and electrophysiology research, based on high volume CMOS (complementary metal oxide semiconductor) integrated circuit technology. The electrode is formed by the anodisation of CMOS metallisation to form nanoporous alumina. The process was developed to address the concern of aluminium neurotoxicity, improve corrosion resistance under physiological conditions and to present a preferential morphology for cell–substrate adhesion. Thin-film anodisation is optimised to overcome problems of thermal fusing, enabling a variety of substrate morphologies to be produced using potentials of 10–100 V. Current density scaling factors are shown to confirm the suitability of CMOS circuit geometries to the anodisation process. Corrosion tests demonstrate improved corrosion performance of the porous alumina electrode. The process and scaling factors are validated by anodisation of a simple CMOS device.

[1]  The electrical properties of porous anodic A12O3 films, incorporating Ag within the pores , 1983 .

[2]  S. Szunerits,et al.  Reactivity of Titanium in Physiological Medium I. Electrochemical Characterization of the Metal/Protein Interface , 2007 .

[3]  G. C. Wood,et al.  The morphology and mechanism of formation of porous anodic films on aluminium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  P. Wilshaw,et al.  Nano‐porous Alumina Coatings for Improved Bone Implant Interfaces , 2003 .

[5]  G. Perry,et al.  Alzheimer's disease: A century of scientific and clinical research , 2006 .

[6]  A. Hierlemann,et al.  CMOS microelectrode array for the monitoring of electrogenic cells. , 2004, Biosensors & bioelectronics.

[7]  M. Sarret,et al.  Some Considerations on the Influence of Voltage in Potentiostatic Two-Step Anodizing of AA1050 , 2007 .

[8]  P. Fromherz,et al.  Opening of K+ channels by capacitive stimulation from silicon chip , 2005 .

[9]  Andreas Offenhäusser,et al.  Neuron–transistor coupling: interpretation of individual extracellular recorded signals , 2005, European Biophysics Journal.

[10]  D. Robinson,et al.  The electrical properties of metal microelectrodes , 1968 .

[11]  H. Terryn,et al.  Investigation of anodic aluminium oxide layers by electrochemical impedance spectroscopy , 1990 .

[12]  V. Birss,et al.  Impedance Characterization of Anodic Barrier Al Oxide Film Beneath Porous Oxide Layer , 2006 .

[13]  Fredrik Johansson,et al.  The Influence of Porous Silicon on Axonal Outgrowth in Vitro , 2008, IEEE Transactions on Biomedical Engineering.

[14]  P. Abshire,et al.  A CMOS capacitance sensor that monitors cell viability , 2005, IEEE Sensors, 2005..

[15]  S. Wernick,et al.  The Surface Treatment and Finishing of Aluminium and Its Alloys , 1957 .

[16]  K. Wada,et al.  Formation and Microstructures of Anodic Alumina Films from Aluminum Sputtered on Glass Substrate , 2002 .

[17]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[18]  P. Wilshaw,et al.  Initial in vitro interaction of osteoblasts with nano-porous alumina. , 2003, Biomaterials.

[19]  M. Starzak The physical chemistry of membranes , 1984 .

[20]  E. Gómez-Barrena,et al.  Special modes of corrosion under physiological and simulated physiological conditions. , 2008, Acta biomaterialia.

[21]  W. Shen,et al.  Fabrication of highly ordered nanoporous alumina films by stable high-field anodization , 2006 .

[22]  Andreas Hierlemann,et al.  Impedance characterization and modeling of electrodes for biomedical applications , 2005, IEEE Transactions on Biomedical Engineering.

[23]  D. Scott MacKenzie,et al.  Handbook of Aluminum: Volume 2 Alloy Production and Materials Manufacturing , 2007 .

[24]  Luca Berdondini,et al.  Development of an electroless post-processing technique for depositing gold as electrode material on CMOS devices , 2004 .

[25]  Dieter Braun,et al.  Adhesion proteins for a tight neuron–electrode contact , 2001, Journal of Neuroscience Methods.

[26]  Karen A. Moxon,et al.  Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface , 2004, IEEE Transactions on Biomedical Engineering.

[27]  M. Boman,et al.  Nanoporous aluminum oxide affects neutrophil behaviour , 2004, Microscopy research and technique.

[28]  P. Fromherz,et al.  The extracellular electrical resistivity in cell adhesion. , 2006, Biophysical journal.

[29]  Y. Nishi,et al.  Handbook of Semiconductor Manufacturing Technology , 2007 .

[30]  W. Hwang,et al.  Measurement of the pore sizes for anodic aluminum oxide (AAO) , 2006 .

[31]  S. Prasad,et al.  Development of nanostructured biomedical micro-drug testing device based on in situ cellular activity monitoring. , 2006, Biosensors & bioelectronics.

[32]  A. Sapelkin,et al.  Interaction of B50 rat hippocampal cells with stain-etched porous silicon. , 2006, Biomaterials.

[33]  S. Feliu,et al.  Characterisation of porous and barrier layers of anodic oxides on different aluminium alloys , 2007 .

[34]  J. W. Dini,et al.  Electrodeposition: The Materials Science of Coatings and Substrates , 1993 .

[35]  Sachiko Ono,et al.  Self-ordering of anodic porous alumina formed in organic acid electrolytes , 2005 .

[36]  A. Offenhäusser,et al.  Suspended nanoporous membranes as interfaces for neuronal biohybrid systems. , 2006, Nano letters.

[37]  A. Heilmann,et al.  Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes. , 2007, Acta biomaterialia.

[38]  Nicolas H Voelcker,et al.  Evaluation of mammalian cell adhesion on surface-modified porous silicon. , 2006, Biomaterials.

[39]  Shlomo Yitzchaik,et al.  Reversible transition of extracellular field potential recordings to intracellular recordings of action potentials generated by neurons grown on transistors. , 2008, Biosensors & bioelectronics.

[40]  Tejal A Desai,et al.  Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. , 2005, Journal of biomedical materials research. Part A.

[41]  Martin Moskovits,et al.  Nanowires formed in anodic oxide nanotemplates , 1994 .

[42]  S. C. Bayliss,et al.  Nature of the Silicon-Animal Cell Interface , 2000 .

[43]  G. Borghs,et al.  Electrochemical impedance spectroscopic study of barrier layer thinning in nanostructured aluminium , 2007 .

[44]  C. Toh,et al.  Characterization of the barrier layer of nanoporous alumina films prepared using two different contact configurations , 2007 .

[45]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[46]  Masahiro Kawahara,et al.  Effects of aluminum on the neurotoxicity of primary cultured neurons and on the aggregation of β-amyloid protein , 2001, Brain Research Bulletin.

[47]  M. Yun,et al.  Alumina nanotemplate fabrication on silicon substrate , 2004 .

[48]  R. C. Furneaux,et al.  The formation of controlled-porosity membranes from anodically oxidized aluminium , 1989, Nature.