Cold Regions Hydrology High-Resolution Observatory for Snow and Cold Land Processes

Snow is a critical component of the global water cycle and climate system, and a major source of water supply in many parts of the world. There is a lack of spatially distributed information on the accumulation of snow on land surfaces, glaciers, lake ice, and sea ice. Satellite missions for systematic and global snow observations will be essential to improve the representation of the cryosphere in climate models and to advance the knowledge and prediction of the water cycle variability and changes that depend on snow and ice resources. This paper describes the scientific drivers and technical approach of the proposed Cold Regions Hydrology High-Resolution Observatory (CoReH2O) satellite mission for snow and cold land processes. The sensor is a synthetic aperture radar operating at 17.2 and 9.6 GHz, VV and VH polarizations. The dual-frequency and dual-polarization design enables the decomposition of the scattering signal for retrieving snow mass and other physical properties of snow and ice.

[1]  K. Trenberth,et al.  Observations: Surface and Atmospheric Climate Change , 2007 .

[2]  Simonetta Paloscia,et al.  The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops , 2001, IEEE Trans. Geosci. Remote. Sens..

[3]  David A. Robinson,et al.  Improved simulations of snow extent in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2) , 2003 .

[4]  Jiancheng Shi,et al.  Electromagnetic scattering calculated from pair distribution functions retrieved from planar snow sections , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  R. Dickinson,et al.  The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d) , 2001 .

[6]  Helmut Rott,et al.  Retrieval of wet snow by means of multitemporal SAR data , 2000, IEEE Trans. Geosci. Remote. Sens..

[7]  Leung Tsang,et al.  Multiple scattering of waves by dense random distributions of sticky particles for applications in microwave scattering by terrestrial snow , 2007 .

[8]  Leung Tsang,et al.  Frequency dependence of scattering and extinction of dense media based on three-dimensional simulations of Maxwell's equations with applications to snow , 2003, IEEE Trans. Geosci. Remote. Sens..

[9]  Ross D. Brown,et al.  Northern Hemisphere Snow Cover Variability and Change, 1915-97. , 2000 .

[10]  Ramata Magagi,et al.  Use of ground observations to simulate the seasonal changes in the backscattering coefficient of the subarctic forest , 2002, IEEE Trans. Geosci. Remote. Sens..

[11]  Bicheron Patrice,et al.  The Most Detailed Portrait of Earth , 2008 .

[12]  Laurent Ferro-Famil,et al.  Snowpack Characterization in Mountainous Regions Using C-Band SAR Data and a Meteorological Model , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Simon Yueh,et al.  POLSCAT Ku-band Radar Remote Sensing of Terrestrial Snow Cover , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[14]  Kevin E. Trenberth,et al.  Observations of climate change: The 2007 IPCC Assessment , 2007 .

[15]  Christian Mätzler,et al.  Applications of the interaction of microwaves with the natural snow cover , 1987 .

[16]  Son V. Nghiem,et al.  Rapid formation of a sea ice barrier east of Svalbard , 2005 .

[17]  Simon Yueh,et al.  Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial Snow Cover , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Robert W. Corell ACIA Arctic Climate Impact Assessment. PROGRESS REPORT. March 2003. , 2003 .

[19]  Frédéric Achard,et al.  GLOBCOVER : The most detailed portrait of Earth , 2008 .

[20]  Jiancheng Shi,et al.  Snow Water Equivalence Retrieval Using X and Ku band Dual-Polarization Radar , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[21]  F. Ulaby,et al.  Snowcover Influence on Backscattering from Terrain , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Valéry Masson,et al.  ECOCLIMAP: a global database of land surface parameters at 1 km resolution , 2005 .

[23]  T. Barnett,et al.  Potential impacts of a warming climate on water availability in snow-dominated regions , 2005, Nature.

[24]  Johannes Oerlemans,et al.  Glaciers and climate change , 2001 .

[25]  Chris Derksen,et al.  Detection of pan-Arctic terrestrial snowmelt from QuikSCAT, 2000–2005 , 2008 .

[26]  Mark F. Meier,et al.  GLACIERS AND THE CHANGING EARTH SYSTEM: A 2004 SNAPSHOT , 2010 .

[27]  Helmut Rott,et al.  Seasonal and short-term variability of multifrequency, polarimetric radar backscatter of Alpine terrain from SIR-C/X-SAR and AIRSAR data , 2001, IEEE Trans. Geosci. Remote. Sens..

[28]  Kamal Sarabandi,et al.  Simulation of interferometric SAR response for characterizing the scattering phase center statistics of forest canopies , 2000, IEEE Trans. Geosci. Remote. Sens..

[29]  Alfred T. C. Chang,et al.  Development of a passive microwave global snow depth retrieval algorithm for Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) data , 2003 .

[30]  L. Hinzman,et al.  Observations: Changes in Snow, Ice and Frozen Ground , 2007 .

[31]  David G. Tarboton,et al.  Sub-grid parameterization of snow distribution for an energy and mass balance snow cover model , 1999 .

[32]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .

[33]  W. Marsden I and J , 2012 .

[34]  G. Liston Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models , 2004 .

[35]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[36]  Patrick Wursteisen,et al.  The SARALPS-2007 measurement campaign on Xand Ku-Band Backscatter of snow , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[37]  Stefano Bianchi,et al.  Vega Readies for Flight : Status and Qualification Flight Preparation , 2008 .

[38]  M. Gerbaux,et al.  Surface mass balance of glaciers in the French Alps: distributed modeling and sensitivity to climate change , 2005 .

[39]  Helmut Rott,et al.  Active and passive microwave signatures of Antarctic firn by means of field measurements and satellite data , 1993 .

[40]  Franz Schreier,et al.  Statistical inversion theory , 2010 .

[41]  Achim Roth,et al.  Status Report on the TerraSAR-X Mission , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[42]  Andrew W. Ellis,et al.  Hydroclimatic Analysis of Snowfall Trends Associated with the North American Great Lakes , 2004 .

[43]  Leung Tsang,et al.  Modeling Active Microwave Remote Sensing of Snow Using Dense Media Radiative Transfer (DMRT) Theory With Multiple-Scattering Effects , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[44]  C. Swift,et al.  Microwave remote sensing , 1980, IEEE Antennas and Propagation Society Newsletter.

[45]  Zong-Liang Yang,et al.  Validation of the energy budget of an alpine snowpack simulated by several snow models (Snow MIP project) , 2004, Annals of Glaciology.

[46]  Simon Yueh,et al.  Arctic sea ice extent and melt onset from NSCAT observations , 1998 .

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.