Chapter 4 Finite Element Methods
暂无分享,去创建一个
[1] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[2] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[3] Frank Natterer,et al. Über die punktweise Konvergenz Finiter Elemente , 1975 .
[4] R. Scott. Interpolated Boundary Conditions in the Finite Element Method , 1975 .
[5] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[6] C. Carstensen. QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .
[7] V. Girault,et al. A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .
[8] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[9] A. H. Schatz,et al. Interior estimates for Ritz-Galerkin methods , 1974 .
[10] J. Pasciak,et al. The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .
[11] M. Zlámal. Curved Elements in the Finite Element Method. I , 1973 .
[12] C. Bernardi. Optimal finite-element interpolation on curved domains , 1989 .
[13] A. Aziz. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .
[14] Rolf Rannacher,et al. Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .
[15] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[16] Susanne C. Brenner,et al. SOME NONSTANDARD FINITE ELEMENT ESTIMATES WITH APPLICATIONS TO 3D POISSON AND SIGNORINI PROBLEMS , 2001 .
[18] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[19] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[20] J. Lions,et al. Inequalities in mechanics and physics , 1976 .
[21] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[22] L. Wahlbin. On the sharpness of certain local estimates for ¹ projections into finite element spaces: influence of a re-entrant corner , 1984 .
[23] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[24] C. Carstensen,et al. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .
[25] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .
[26] Carsten Carstensen,et al. Matlab Implementation of the Finite Element Method in Elasticity , 2002, Computing.
[27] Ian H. Sloan,et al. Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .
[28] J. Nitsche. On Korn's second inequality , 1981 .
[29] A. H. Schatz,et al. Interior maximum-norm estimates for finite element methods, part II , 1995 .
[30] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[31] A. H. Schatz,et al. On the quasi-optimality in _{∞} of the ¹-projection into finite element spaces , 1982 .
[32] Ivo Babuška. Courant Element: Before and After , 1994 .
[33] Ricardo H. Nochetto,et al. Optimal L∞-error estimates for nonconforming and mixed finite element methods of lowest order , 1987 .
[34] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[35] Carsten Carstensen,et al. An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..
[36] H SchatzAlfred. Pointwise Error Estimates and Asymptotic Error Expansion Inequalities for the Finite Element Method on Irregular Grids , 2000 .
[37] J. Roßmann,et al. Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .
[38] R. Verfürth,et al. Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .
[39] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[40] Carsten Carstensen,et al. A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..
[41] L. R. Scott,et al. Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .
[42] Joseph E. Pasciak,et al. On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..
[43] L. Wahlbin,et al. Local behavior in finite element methods , 1991 .
[44] Pekka Neittaanmäki,et al. On superconvergence techniques , 1987 .
[45] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[46] Carsten Carstensen,et al. Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..
[47] Rüdiger Verfürth,et al. A note on polynomial approximation in Sobolev spaces , 1999 .
[48] Alfred H. Schatz,et al. Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates , 1998, Math. Comput..
[49] L. R. Scott. Finite element techniques for curved boundaries , 1973 .
[50] I. Babuska,et al. On locking and robustness in the finite element method , 1992 .
[51] Serge Nicaise,et al. Polygonal interface problems:higher regularity results , 1990 .
[52] T. Dupont,et al. Polynomial approximation of functions in Sobolev spaces , 1980 .
[53] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..
[54] Chuanmiao Chen,et al. Superconvergence for triangular finite elements , 1999 .
[55] B. Plamenevskii,et al. Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .
[56] S. Agmon. Lectures on Elliptic Boundary Value Problems , 1965 .
[57] Philippe G. Ciarlet,et al. Mathematical elasticity. volume II, Theory of plates , 1997 .
[58] J. J. Douglas,et al. Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces , 1974 .
[59] Carsten Carstensen,et al. Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis , 2004 .
[60] Douglas N. Arnold,et al. Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.
[61] M. Dauge. Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .
[62] Carsten Carstensen,et al. Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.
[63] Vidar Thomée,et al. Mathematical theory of finite and boundary element methods , 1990 .
[64] Ricardo H. Nochetto,et al. Removing the saturation assumption in a posteriori error analysis , 1993 .
[65] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[66] A. Ženíšek,et al. Maximum-angle condition and triangular finite elements of Hermite type , 1995 .
[67] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[68] Harold A. Buetow,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[69] R. Courant. Variational methods for the solution of problems of equilibrium and vibrations , 1943 .
[70] J. N. Reddy,et al. Applied Functional Analysis and Variational Methods in Engineering , 1986 .
[71] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[72] Carsten Carstensen,et al. Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .
[73] J. Bramble,et al. Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .
[74] Alfred H. Schatz,et al. Pointwise Error Estimates and Asymptotic Error Expansion Inequalities for the Finite Element Method on Irregular Grids: Part II. Interior Estimates , 2000, SIAM J. Numer. Anal..
[75] A. H. Schatz,et al. Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .
[76] J. Douglas,et al. A family of $C^1$ finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems , 1979 .
[77] Vivette Girault,et al. Hermite interpolation of nonsmooth functions preserving boundary conditions , 2002, Math. Comput..
[78] I. Babuska,et al. THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT by , 2022 .
[79] R. Rodríguez. Some remarks on Zienkiewicz‐Zhu estimator , 1994 .
[80] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[81] A. H. Schatz,et al. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .
[82] I. Babuska,et al. ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .
[83] Roland Glowinski,et al. An introduction to the mathematical theory of finite elements , 1976 .
[84] D. Malkus,et al. Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .
[85] I. Babuska,et al. Analysis of Optimal Finite Element Meshes in R1 , 1979 .
[86] J. Z. Zhu,et al. The finite element method , 1977 .
[87] Vladimir Maz’ya,et al. Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations , 2000 .
[88] J. Tinsley Oden,et al. Applied functional analysis , 1996 .
[89] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[90] I. Babuska,et al. The finite element method and its reliability , 2001 .
[91] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[92] Ricardo H. Nochetto,et al. Positivity preserving finite element approximation , 2002, Math. Comput..
[93] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[94] Carsten Carstensen,et al. All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..
[95] Carsten Carstensen,et al. Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..
[96] M. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .
[97] P. Ciarlet,et al. Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .
[98] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[99] A. H. Schatz,et al. Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements , 1979 .
[100] K. Bathe. Finite Element Procedures , 1995 .
[101] Eberhard Bänsch,et al. Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..
[102] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .
[103] Maximum-angle condition and triangular finite elements of Hermite type , 1995 .
[104] G. Strang,et al. The change in solution due to change in domain , 1971 .
[105] R. B. Kellogg,et al. Nonuniform Error Estimates for the Finite Element Method , 1975 .
[106] M. Wheeler. An Optimal $L_\infty $ Error Estimate for Galerkin Approximations to Solutions of Two-Point Boundary Value Problems , 1973 .
[107] Carsten Carstensen,et al. An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces , 2004 .
[108] Kurt Friedrichs,et al. On the Boundary-Value Problems of the Theory of Elasticity and Korn's Inequality , 1947 .
[109] Michael Vogelius,et al. Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .
[110] D. Arnold,et al. Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .
[111] P. Jamet. Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .
[112] Douglas N. Arnold,et al. Approximation by quadrilateral finite elements , 2000, Math. Comput..
[113] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[114] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[115] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[116] M. Lenoir. Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .
[117] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[118] Thomas Apel,et al. Anisotropic interpolation with applications to the finite element method , 1991, Computing.
[119] I. Babuska,et al. The plate paradox for hard and soft support , 1990 .
[120] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[121] J. Douglas,et al. Optimal _{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems , 1975 .
[122] Rodolfo Rodríguez. A Posteriori Error Analysis in the Finite Element Method , 1994 .
[123] Ricardo H. Nochetto,et al. Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..
[124] M. Dauge. Elliptic boundary value problems on corner domains , 1988 .
[125] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[126] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[127] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[128] Mary F. Wheeler,et al. An $L^\infty $ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials , 1974 .
[129] I. Babuska,et al. Finite Element Analysis , 2021 .
[130] Approximation of the Boundary in the Finite Element Solution of Fourth Order Problems , 1978 .
[131] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .