Chapter 4 Finite Element Methods

examples for estimators are (26) and (27), which involve dual norms of the residual (25). Notice carefully that R := F − a(ũ, ·) is a bounded linear functional in V , written R ∈ V ∗, and hence the dual norm ‖R‖V ∗ := sup v∈V \{0} R(v) ‖v‖a = sup v∈V \{0} a(e, v) ‖v‖a = ‖e‖a 0 and interested in a stopping criterion (of successively adapted mesh refinements)

[1]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[2]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[3]  Frank Natterer,et al.  Über die punktweise Konvergenz Finiter Elemente , 1975 .

[4]  R. Scott Interpolated Boundary Conditions in the Finite Element Method , 1975 .

[5]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[6]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[7]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[8]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[9]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[10]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[11]  M. Zlámal Curved Elements in the Finite Element Method. I , 1973 .

[12]  C. Bernardi Optimal finite-element interpolation on curved domains , 1989 .

[13]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[14]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[15]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[16]  Susanne C. Brenner,et al.  SOME NONSTANDARD FINITE ELEMENT ESTIMATES WITH APPLICATIONS TO 3D POISSON AND SIGNORINI PROBLEMS , 2001 .

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[20]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[21]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[22]  L. Wahlbin On the sharpness of certain local estimates for ¹ projections into finite element spaces: influence of a re-entrant corner , 1984 .

[23]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[24]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[25]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[26]  Carsten Carstensen,et al.  Matlab Implementation of the Finite Element Method in Elasticity , 2002, Computing.

[27]  Ian H. Sloan,et al.  Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .

[28]  J. Nitsche On Korn's second inequality , 1981 .

[29]  A. H. Schatz,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .

[30]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[31]  A. H. Schatz,et al.  On the quasi-optimality in _{∞} of the ¹-projection into finite element spaces , 1982 .

[32]  Ivo Babuška Courant Element: Before and After , 1994 .

[33]  Ricardo H. Nochetto,et al.  Optimal L∞-error estimates for nonconforming and mixed finite element methods of lowest order , 1987 .

[34]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[35]  Carsten Carstensen,et al.  An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..

[36]  H SchatzAlfred Pointwise Error Estimates and Asymptotic Error Expansion Inequalities for the Finite Element Method on Irregular Grids , 2000 .

[37]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[38]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[39]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[40]  Carsten Carstensen,et al.  A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..

[41]  L. R. Scott,et al.  Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .

[42]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[43]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[44]  Pekka Neittaanmäki,et al.  On superconvergence techniques , 1987 .

[45]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[46]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[47]  Rüdiger Verfürth,et al.  A note on polynomial approximation in Sobolev spaces , 1999 .

[48]  Alfred H. Schatz,et al.  Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates , 1998, Math. Comput..

[49]  L. R. Scott Finite element techniques for curved boundaries , 1973 .

[50]  I. Babuska,et al.  On locking and robustness in the finite element method , 1992 .

[51]  Serge Nicaise,et al.  Polygonal interface problems:higher regularity results , 1990 .

[52]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[53]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[54]  Chuanmiao Chen,et al.  Superconvergence for triangular finite elements , 1999 .

[55]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[56]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[57]  Philippe G. Ciarlet,et al.  Mathematical elasticity. volume II, Theory of plates , 1997 .

[58]  J. J. Douglas,et al.  Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces , 1974 .

[59]  Carsten Carstensen,et al.  Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis , 2004 .

[60]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.

[61]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[62]  Carsten Carstensen,et al.  Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.

[63]  Vidar Thomée,et al.  Mathematical theory of finite and boundary element methods , 1990 .

[64]  Ricardo H. Nochetto,et al.  Removing the saturation assumption in a posteriori error analysis , 1993 .

[65]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[66]  A. Ženíšek,et al.  Maximum-angle condition and triangular finite elements of Hermite type , 1995 .

[67]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[68]  Harold A. Buetow,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[69]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[70]  J. N. Reddy,et al.  Applied Functional Analysis and Variational Methods in Engineering , 1986 .

[71]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[72]  Carsten Carstensen,et al.  Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .

[73]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[74]  Alfred H. Schatz,et al.  Pointwise Error Estimates and Asymptotic Error Expansion Inequalities for the Finite Element Method on Irregular Grids: Part II. Interior Estimates , 2000, SIAM J. Numer. Anal..

[75]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[76]  J. Douglas,et al.  A family of $C^1$ finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems , 1979 .

[77]  Vivette Girault,et al.  Hermite interpolation of nonsmooth functions preserving boundary conditions , 2002, Math. Comput..

[78]  I. Babuska,et al.  THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT by , 2022 .

[79]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[80]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[81]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[82]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[83]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[84]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[85]  I. Babuska,et al.  Analysis of Optimal Finite Element Meshes in R1 , 1979 .

[86]  J. Z. Zhu,et al.  The finite element method , 1977 .

[87]  Vladimir Maz’ya,et al.  Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations , 2000 .

[88]  J. Tinsley Oden,et al.  Applied functional analysis , 1996 .

[89]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[90]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[91]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[92]  Ricardo H. Nochetto,et al.  Positivity preserving finite element approximation , 2002, Math. Comput..

[93]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[94]  Carsten Carstensen,et al.  All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..

[95]  Carsten Carstensen,et al.  Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..

[96]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[97]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[98]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[99]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements , 1979 .

[100]  K. Bathe Finite Element Procedures , 1995 .

[101]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[102]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .

[103]  Maximum-angle condition and triangular finite elements of Hermite type , 1995 .

[104]  G. Strang,et al.  The change in solution due to change in domain , 1971 .

[105]  R. B. Kellogg,et al.  Nonuniform Error Estimates for the Finite Element Method , 1975 .

[106]  M. Wheeler An Optimal $L_\infty $ Error Estimate for Galerkin Approximations to Solutions of Two-Point Boundary Value Problems , 1973 .

[107]  Carsten Carstensen,et al.  An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces , 2004 .

[108]  Kurt Friedrichs,et al.  On the Boundary-Value Problems of the Theory of Elasticity and Korn's Inequality , 1947 .

[109]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[110]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[111]  P. Jamet Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .

[112]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[113]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[114]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[115]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[116]  M. Lenoir Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .

[117]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[118]  Thomas Apel,et al.  Anisotropic interpolation with applications to the finite element method , 1991, Computing.

[119]  I. Babuska,et al.  The plate paradox for hard and soft support , 1990 .

[120]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[121]  J. Douglas,et al.  Optimal _{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems , 1975 .

[122]  Rodolfo Rodríguez A Posteriori Error Analysis in the Finite Element Method , 1994 .

[123]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[124]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[125]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[126]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[127]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[128]  Mary F. Wheeler,et al.  An $L^\infty $ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials , 1974 .

[129]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[130]  Approximation of the Boundary in the Finite Element Solution of Fourth Order Problems , 1978 .

[131]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .