Hardware Reduction in Digital Delta-Sigma Modulators via Bus-Splitting and Error Masking—Part II: Non-Constant Input

In this two-part paper, a design methodology for hardware reduction in digital delta-sigma modulators (DDSMs) based on bus-splitting and error masking is presented. Part I addresses Multi stAge noise SHaping (MASH) DDSMs with constant inputs; Part II focuses on error feedback modulators (EFMs) with time-varying inputs. In this paper, we address EFMs with DC inputs plus additive input least significant bit (LSB) dithering and show how hardware reduction can be achieved with minimal degradation of the output spectrum. We also address EFMs with sinusoidal inputs and show how bus-splitting and error masking techniques can be used to obtain a trade-off between the modulator complexity and the achievable signal-to-noise ratio.

[1]  Yiannos Manoli,et al.  ΣΔ Data Converters , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[2]  K. Nguyen,et al.  A 108 dB SNR, 1.1 mW Oversampling Audio DAC With A Three-level DEM Technique , 2008, IEEE Journal of Solid-State Circuits.

[3]  Sudhakar Pamarti,et al.  LSB Dithering in MASH Delta–Sigma D/A Converters , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Sudhakar Pamarti,et al.  Statistics of the Quantization Noise in 1-Bit Dithered Single-Quantizer Digital Delta–Sigma Modulators , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  In-Cheol Park,et al.  Spur-Free MASH Delta-Sigma Modulation , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  I. Fujimori,et al.  A multibit delta-sigma audio DAC with 120-dB dynamic range , 2000, IEEE Journal of Solid-State Circuits.

[7]  Michael Peter Kennedy,et al.  Hardware reduction in delta-sigma digital-to-analog converters via bus-splitting , 2011 .

[8]  Michael Peter Kennedy,et al.  Hardware Reduction in Digital Delta-Sigma Modulators Via Bus-Splitting and Error Masking—Part I: Constant Input , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Zhipeng Ye,et al.  Hardware Reduction in Digital Delta-Sigma Modulators Via Error Masking - Part I: MASH DDSM , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  D. A. Rich,et al.  A minimal multibit digital noise shaping architecture , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[11]  Michael Peter Kennedy,et al.  Prediction of the Spectrum of a Digital Delta–Sigma Modulator Followed by a Polynomial Nonlinearity , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  Pin-En Su,et al.  Fractional-$N$ Phase-Locked-Loop-Based Frequency Synthesis: A Tutorial , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  IsmailMohammed,et al.  Multimode reconfigurable digital ΣΔ modulator architecture for fractional-N PLLs , 2010 .

[14]  B. Wooley,et al.  A 14-bit , 10-Msamples / s D / A Converter Using Multibit Modulation , 1998 .

[15]  Michael Peter Kennedy,et al.  A novel implementation of dithered digital delta-sigma modulators via bus-splitting , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[16]  Dandan Li,et al.  Stable high-order delta-sigma digital-to-analog converters , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[18]  Michael Peter Kennedy,et al.  Maximum Sequence Length MASH Digital Delta–Sigma Modulators , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Franco Maloberti,et al.  Efficient Dithering in MASH Sigma-Delta Modulators for Fractional Frequency Synthesizers , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.