Global well posedness for the Gross–Pitaevskii equation with an angular momentum rotational term
暂无分享,去创建一个
[1] J Dalibard,et al. Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation. , 2001, Physical review letters.
[2] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[3] E. Gross. Structure of a quantized vortex in boson systems , 1961 .
[4] B. Simon,et al. Schrödinger operators with magnetic fields , 1981 .
[5] W. Ketterle,et al. Bose-Einstein condensation , 1997 .
[6] Yanzhi Zhang,et al. Dynamics of the center of mass in rotating Bose--Einstein condensates , 2007 .
[7] Qiang Du,et al. Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..
[8] T. Tao,et al. Endpoint Strichartz estimates , 1998 .
[9] J. R. Ensher,et al. Dynamics of component separation in a binary mixture of Bose-Einstein condensates , 1998 .
[10] Rémi Carles,et al. Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation , 2003, math/0702656.
[11] Dalibard,et al. Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.
[12] E. M. Lifshitz,et al. Quantum mechanics: Non-relativistic theory, , 1959 .
[13] C. E. Wieman,et al. Vortices in a Bose Einstein condensate , 1999, QELS 2000.
[14] Weizhu Bao,et al. Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates , 2005 .
[15] B. Simon,et al. Schrödinger operators with magnetic fields. I. general interactions , 1978 .
[16] Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation , 2005, math-ph/0511081.