A Comparative Analysis of Upper-Ocean Heat Content Variability from an Ensemble of Operational Ocean Reanalyses

AbstractOcean heat content (HC) is one of the key indicators of climate variability and also provides ocean memory critical for seasonal and decadal predictions. The availability of multiple operational ocean analyses (ORAs) now routinely produced around the world is an opportunity for estimation of uncertainties in HC analysis and development of ensemble-based operational HC climate indices. In this context, the spread across the ORAs is used to quantify uncertainties in HC analysis and the ensemble mean of ORAs to identify, and to monitor, climate signals. Toward this goal, this study analyzed 10 ORAs, two objective analyses based on in situ data only, and eight model analyses based on ocean data assimilation systems. The mean, annual cycle, interannual variability, and long-term trend of HC in the upper 300 m (HC300) from 1980 to 2009 are compared.The spread across HC300 analyses generally decreased with time and reached a minimum in the early 2000s when the Argo data became available. There was a good...

[1]  Li Zhang,et al.  Influence of changes in observations on precipitation: A case study for the Climate Forecast System Reanalysis (CFSR) , 2012 .

[2]  Francisco J. Doblas-Reyes,et al.  Decadal prediction skill in a multi-model ensemble , 2012, Climate Dynamics.

[3]  M. Balmaseda,et al.  An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products , 2012, Climate Dynamics.

[4]  Arun Kumar,et al.  AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system , 2012, Climate Dynamics.

[5]  Arun Kumar,et al.  An assessment of oceanic variability in the NCEP climate forecast system reanalysis , 2011 .

[6]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[7]  Yonghong Yin,et al.  An Ensemble Ocean Data Assimilation System for Seasonal Prediction , 2011 .

[8]  A. Rosati,et al.  A construction of pseudo salinity profiles for the global ocean: Method and evaluation , 2011 .

[9]  T. Boyer,et al.  Impact of Bathythermograph Temperature Bias Models on an Ocean Reanalysis , 2011 .

[10]  Yan Xue,et al.  Ocean State Estimation for Global Ocean Monitoring: ENSO and Beyond ENSO , 2010 .

[11]  Patrick Heimbach,et al.  Ocean information provided through ensemble ocean syntheses , 2010 .

[12]  Tong Lee,et al.  Ocean State Estimation for Climate Research , 2010 .

[13]  G. Meehl,et al.  Patterns of Indian Ocean sea-level change in a warming climate , 2010 .

[14]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[15]  Hisashi Nakamura,et al.  Role of the Gulf Stream and Kuroshio–Oyashio Systems in Large-Scale Atmosphere–Ocean Interaction: A Review , 2010 .

[16]  Gregory C. Johnson,et al.  Robust warming of the global upper ocean , 2010, Nature.

[17]  G. Meehl,et al.  Decadal prediction: Can it be skillful? , 2009 .

[18]  Tong Lee,et al.  Ocean Initialization for Seasonal Forecasts , 2009 .

[19]  David L. T. Anderson,et al.  Impact of initialization strategies and observations on seasonal forecast skill , 2009 .

[20]  J. Carton,et al.  Global Decadal Upper-Ocean Heat Content as Viewed in Nine Analyses , 2008 .

[21]  Toru Miyama,et al.  Development of a four‐dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations , 2008 .

[22]  Rong‐Hua Zhang Coherent surface‐subsurface fingerprint of the Atlantic meridional overturning circulation , 2008 .

[23]  David L. T. Anderson,et al.  The ECMWF Ocean Analysis System: ORA-S3 , 2008 .

[24]  Christian L. Keppenne,et al.  Error Covariance Modeling in the GMAO Ocean Ensemble Kalman Filter , 2008 .

[25]  Peter J. Gleckler,et al.  Improved estimates of upper-ocean warming and multi-decadal sea-level rise , 2008, Nature.

[26]  James C. McWilliams,et al.  North Pacific Gyre Oscillation links ocean climate and ecosystem change , 2008 .

[27]  M. Drévillon,et al.  The GODAE/Mercator-Ocean global ocean forecasting system: results, applications and prospects , 2008 .

[28]  S. Levitus,et al.  Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems , 2007 .

[29]  Thomas M. Smith,et al.  Daily High-Resolution-Blended Analyses for Sea Surface Temperature , 2007 .

[30]  A. Rosati,et al.  System Design and Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate Studies , 2007 .

[31]  M. Huddleston,et al.  Quality control of ocean temperature and salinity profiles — Historical and real-time data , 2007 .

[32]  M. Latif,et al.  Understanding Equatorial Atlantic Interannual Variability , 2007 .

[33]  A. Biastoch,et al.  Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning , 2006 .

[34]  S. Saha,et al.  The NCEP Climate Forecast System , 2006 .

[35]  M. Balmaseda,et al.  Assimilation of altimeter data in the ECMWF ocean analysis system 3. , 2006 .

[36]  Yosuke Fujii,et al.  Meteorological research institute multivariate ocean variational estimation (MOVE) system : Some early results , 2006 .

[37]  J. Arblaster,et al.  Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content , 2005, Nature.

[38]  Satoshi Sugimoto,et al.  Objective analyses of sea‐surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection , 2005 .

[39]  Michael H. Freilich,et al.  Scatterometer-Based Assessment of 10-m Wind Analyses from the Operational ECMWF and NCEP Numerical Weather Prediction Models , 2005 .

[40]  S. Häkkinen,et al.  Decline of Subpolar North Atlantic Circulation During the 1990s , 2004, Science.

[41]  Allan J. Clarke,et al.  Improving El Niño prediction using a space‐time integration of Indo‐Pacific winds and equatorial Pacific upper ocean heat content , 2003 .

[42]  Yan Xue,et al.  EVALUATION OF THE GLOBAL OCEAN DATA ASSIMILATION SYSTEM AT NCEP: THE PACIFIC OCEAN , 2003 .

[43]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[44]  S. Xie,et al.  Structure and Mechanisms of South Indian Ocean Climate Variability , 2002 .

[45]  Y. Masumoto,et al.  Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole , 2002 .

[46]  J. Carton,et al.  Structure of Interannual-to-Decadal Climate Variability in the Tropical Atlantic Sector , 2000 .

[47]  Bohua Huang,et al.  Interannual variability in the tropical Indian Ocean , 2000 .

[48]  S. Levitus,et al.  Warming of the World Ocean , 2000 .

[49]  Ming Ji,et al.  ENSO Prediction with Markov Models: The Impact of Sea Level , 2000 .

[50]  B. Goswami,et al.  A dipole mode in the tropical Indian Ocean , 1999, Nature.

[51]  Ming Ji,et al.  An Improved Coupled Model for ENSO Prediction and Implications for Ocean Initialization. Part I: The Ocean Data Assimilation System , 1998 .

[52]  Ming Ji,et al.  An Improved Coupled Model for ENSO Prediction and Implications for Ocean Initialization. Part II: The Coupled Model , 1998 .

[53]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[54]  Keith Haines,et al.  Altimetric assimilation with water property conservation , 1996 .

[55]  S. Zebiak Air–Sea Interaction in the Equatorial Atlantic Region , 1993 .