Efficient platform for synthesizing comprehensive heparan sulfate oligosaccharide libraries for decoding glycosaminoglycan–protein interactions

[1]  L. Hsieh‐Wilson,et al.  Automated Solid Phase Assisted Synthesis of a Heparan Sulfate Disaccharide Library. , 2022, Organic chemistry frontiers : an international journal of organic chemistry.

[2]  Kezhong Zhang,et al.  Heparan Sulfate Mimicking Glycopolymer Prevents Pancreatic β Cell Destruction and Suppresses Inflammatory Cytokine Expression in Islets under the Challenge of Upregulated Heparanase. , 2022, ACS chemical biology.

[3]  Sylvain D. Vallet,et al.  The glycosaminoglycan interactome 2.0. , 2022, American journal of physiology. Cell physiology.

[4]  J. Lieberman,et al.  Inflammasome activation at the crux of severe COVID-19 , 2021, Nature Reviews Immunology.

[5]  R. Linhardt,et al.  The Sulfation Code of Tauopathies: Heparan Sulfate Proteoglycans in the Prion Like Spread of Tau Pathology , 2021, Frontiers in Molecular Biosciences.

[6]  R. Woods,et al.  Discovery of rare sulfated N-unsubstituted glucosamine based heparan sulfate analogs selectively activating chemokines† †Electronic supplementary information (ESI) available. See DOI: 10.1039/d0sc05862a , 2021, Chemical science.

[7]  Matthew R. Naticchia,et al.  Spatially controlled glycocalyx engineering for growth factor patterning in embryoid bodies. , 2020, Biomaterials science.

[8]  N. Pohl,et al.  Automated Solution-Phase Synthesis of S-Glycosides for the Production of Oligomannopyranoside Derivatives. , 2020, Organic letters.

[9]  K. Rudolph,et al.  Smarcd3 is an epigenetic modulator of the metabolic landscape in pancreatic ductal adenocarcinoma , 2020, Nature Communications.

[10]  L. Hsieh‐Wilson,et al.  Expedient Synthesis of Core Disaccharide Building Blocks from Natural Polysaccharides for Heparan Sulfate Oligosaccharide Assembly. , 2019, Angewandte Chemie.

[11]  J. Turnbull,et al.  Heparan Sulfate Proteoglycan Synthesis Is Dysregulated in Human Osteoarthritic Cartilage. , 2019, The American journal of pathology.

[12]  P. Tyler,et al.  Using automated glycan assembly (AGA) for the practical synthesis of heparan sulfate oligosaccharide precursors. , 2019, Organic & biomolecular chemistry.

[13]  S. Kunkel,et al.  Attracting Attention: Discovery of IL-8/CXCL8 and the Birth of the Chemokine Field , 2019, The Journal of Immunology.

[14]  J. Esko,et al.  The heparan sulfate proteoglycan grip on hyperlipidemia and atherosclerosis. , 2018, Matrix biology : journal of the International Society for Matrix Biology.

[15]  Kenji F. Tanaka,et al.  Heparan Sulfate Organizes Neuronal Synapses through Neurexin Partnerships , 2018, Cell.

[16]  Chi-Huey Wong,et al.  Programmable one-pot synthesis of heparin pentasaccharides enabling access to regiodefined sulfate derivatives† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc01743c , 2018, Chemical science.

[17]  Salvatore G. Pistorio,et al.  Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. , 2018, Chemical reviews.

[18]  T. Handel,et al.  Heparan Sulfate Microarray Reveals That Heparan Sulfate-Protein Binding Exhibits Different Ligand Requirements. , 2017, Journal of the American Chemical Society.

[19]  R. Reis,et al.  Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders. , 2017, Annual review of biomedical engineering.

[20]  R. Heilbronn,et al.  Automated Glycan Assembly of Oligo-N-Acetyllactosamine and Keratan Sulfate Probes to Study Virus-Glycan Interactions , 2017 .

[21]  M. Ishihara,et al.  Integrated Approach to Identify Heparan Sulfate Ligand Requirements of Robo1. , 2016, Journal of the American Chemical Society.

[22]  U. Schepers,et al.  Chemical Synthesis of Glycosaminoglycans. , 2016, Chemical reviews.

[23]  N. Pohl,et al.  Fluorous-Tag Assisted Syntheses of Sulfated Keratan Sulfate Oligosaccharide Fragments. , 2016, Organic Letters.

[24]  P. Wang,et al.  Facile chemoenzymatic synthesis of biotinylated heparosan hexasaccharide. , 2015, Organic & biomolecular chemistry.

[25]  G. Jayson,et al.  Synthesis of L-iduronic acid derivatives via [3.2.1] and [2.2.2] L-iduronic lactones from bulk glucose-derived cyanohydrin hydrolysis: a reversible conformationally switched superdisarmed/rearmed lactone route to heparin disaccharides. , 2015, The Journal of organic chemistry.

[26]  J. Esko,et al.  Demystifying heparan sulfate-protein interactions. , 2014, Annual review of biochemistry.

[27]  R. Linhardt,et al.  Fluorous-Assisted Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides , 2014, Organic letters.

[28]  L. Hsieh‐Wilson,et al.  Tailored glycopolymers as anticoagulant heparin mimetics. , 2013, Angewandte Chemie.

[29]  Yanhong Li,et al.  Tailored design and synthesis of heparan sulfate oligosaccharide analogues using sequential one-pot multienzyme systems. , 2013, Angewandte Chemie.

[30]  L. Hsieh‐Wilson,et al.  Tunable Heparan Sulfate Mimetics for Modulating Chemokine Activity , 2013, Journal of the American Chemical Society.

[31]  G. Jayson,et al.  Tetrasaccharide iteration synthesis of a heparin-like dodecasaccharide and radiolabelling for in vivo tissue distribution studies , 2013, Nature Communications.

[32]  P. Seeberger,et al.  Automated solid-phase synthesis of chondroitin sulfate glycosaminoglycans. , 2013, Angewandte Chemie.

[33]  G. Boons,et al.  Fluorous supported modular synthesis of heparan sulfate oligosaccharides. , 2013, Organic letters.

[34]  J. Angulo,et al.  Effect of the substituents of the neighboring ring in the conformational equilibrium of iduronate in heparin-like trisaccharides. , 2012, Chemistry.

[35]  S. Hung,et al.  Divergent synthesis of 48 heparan sulfate-based disaccharides and probing the specific sugar-fibroblast growth factor-1 interaction. , 2012, Journal of the American Chemical Society.

[36]  H. Overkleeft,et al.  Automated solid-phase synthesis of hyaluronan oligosaccharides. , 2012, Organic letters.

[37]  Chi‐Huey Wong,et al.  α-Glycosylation by D-glucosamine-derived donors: synthesis of heparosan and heparin analogues that interact with mycobacterial heparin-binding hemagglutinin. , 2012, Journal of the American Chemical Society.

[38]  S. Mousa,et al.  Chemoenzymatic Synthesis of Homogeneous Ultralow Molecular Weight Heparins , 2011, Science.

[39]  S. Hung,et al.  Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction. , 2011, Nature chemistry.

[40]  Yongmei Xu,et al.  Preactivation-based, one-pot combinatorial synthesis of heparin-like hexasaccharides for the analysis of heparin-protein interactions. , 2010, Chemistry.

[41]  Chen Chen,et al.  Efficient synthesis of Idraparinux, the anticoagulant pentasaccharide. , 2009, Bioorganic & medicinal chemistry letters.

[42]  M. Mohammadi,et al.  The FGF family: biology, pathophysiology and therapy , 2009, Nature Reviews Drug Discovery.

[43]  R. Sasisekharan,et al.  Minimum FGF2 binding structural requirements of heparin and heparan sulfate oligosaccharides as determined by NMR spectroscopy. , 2008, Biochemistry.

[44]  N. Pohl,et al.  Toward solution-phase automated iterative synthesis: fluorous-tag assisted solution-phase synthesis of linear and branched mannose oligomers. , 2008, Organic & biomolecular chemistry.

[45]  L. Hsieh‐Wilson,et al.  Neuroactive chondroitin sulfate glycomimetics. , 2008, Journal of the American Chemical Society.

[46]  Peter H Seeberger,et al.  Profiling heparin-chemokine interactions using synthetic tools. , 2007, ACS chemical biology.

[47]  P. Seeberger,et al.  Preparation and use of microarrays containing synthetic heparin oligosaccharides for the rapid analysis of heparin-protein interactions. , 2006, Chemistry.

[48]  Oliver Hobert,et al.  The molecular diversity of glycosaminoglycans shapes animal development. , 2006, Annual review of cell and developmental biology.

[49]  C. Parish The role of heparan sulphate in inflammation , 2006, Nature Reviews Immunology.

[50]  R. Gallo,et al.  Glycosaminoglycans and their proteoglycans: host‐associated molecular patterns for initiation and modulation of inflammation , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[51]  H. Overkleeft,et al.  A modular strategy toward the synthesis of heparin-like oligosaccharides using monomeric building blocks in a sequential glycosylation strategy. , 2005, Journal of the American Chemical Society.

[52]  C. Zwahlen,et al.  The X-ray structure of RANTES: heparin-derived disaccharides allows the rational design of chemokine inhibitors. , 2004, Structure.

[53]  Nobuyuki Itoh,et al.  Characterization of Growth Factor-binding Structures in Heparin/Heparan Sulfate Using an Octasaccharide Library* , 2004, Journal of Biological Chemistry.

[54]  L. Kjellén,et al.  Sulfotransferases in glycosaminoglycan biosynthesis. , 2003, Current opinion in structural biology.

[55]  V. Sasisekharan,et al.  Structural specificity of heparin binding in the fibroblast growth factor family of proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Rees,et al.  Diversity does make a difference: fibroblast growth factor-heparin interactions. , 1998, Current opinion in structural biology.

[57]  D. Spillmann,et al.  Defining the Interleukin-8-binding Domain of Heparan Sulfate* , 1998, The Journal of Biological Chemistry.

[58]  P. Wipf,et al.  Fluorous Synthesis: A Fluorous-Phase Strategy for Improving Separation Efficiency in Organic Synthesis , 1997, Science.

[59]  D C Rees,et al.  Heparin Structure and Interactions with Basic Fibroblast Growth Factor , 1996, Science.

[60]  K. Yoshida,et al.  Importance of 2-O-sulfate groups of uronate residues in heparin for activation of FGF-1 and FGF-2. , 1995, Journal of biochemistry.

[61]  M. Ishihara Structural requirements in heparin for binding and activation of FGF-1 and FGF-4 are different from that for FGF-2. , 1994, Glycobiology.

[62]  B. Olwin,et al.  Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. , 1993, The Journal of biological chemistry.

[63]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[64]  K. Bock,et al.  A STUDY OF (13)CH COUPLING CONSTANTS IN HEXOPYRANOSES , 1974 .

[65]  K. Bock,et al.  A study of 13CH coupling constants in hexopyranoses , 1974 .