Correlation effects in a discrete quantum random walk

We introduce memory-dependent discrete-time quantum random walk models by adding uncorrelated memory terms and also by modifying the Hamiltonian of the walker to include couplings with memory-keeping agents. We next study numerically the correlation effects in these models. We also propose a correlation exponent as a relevant and promising tool for investigation of correlation or memory (hence non-Markovian) effects. Our analysis can easily be applied to more realistic models in which different regimes may emerge because of competition between different underlying physical mechanisms.

[1]  Jochen Gemmer,et al.  Non-Markovian quantum dynamics: correlated projection superoperators and Hilbert space averaging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Frederick W. Strauch,et al.  Connecting the discrete- and continuous-time quantum walks , 2006 .

[3]  D. Abbott,et al.  Quantum walks with history dependence , 2003, quant-ph/0311009.

[4]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[5]  P. Ribeiro,et al.  Aperiodic quantum random walks. , 2004, Physical review letters.

[6]  Friedrich,et al.  How to quantify deterministic and random influences on the statistics of the foreign exchange market , 1999, Physical review letters.

[7]  Heinz-Peter Breuer Genuine quantum trajectories for non-Markovian processes , 2004 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Barry C. Sanders,et al.  Quantum walks in higher dimensions , 2002 .

[11]  A. A. Budini Stochastic representation of a class of non-Markovian completely positive evolutions , 2004, 1801.10011.

[12]  B. M. Fulk MATH , 1992 .

[13]  Philip Stamp,et al.  Decoherence and quantum walks: Anomalous diffusion and ballistic tails , 2006, cond-mat/0605097.

[14]  Andris Ambainis,et al.  Quantum to classical transition for random walks. , 2003, Physical review letters.

[15]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[16]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[17]  Andrew P. Hines,et al.  Quantum walks, quantum gates, and quantum computers , 2007 .

[18]  M. Raizen,et al.  Shape of the quantum diffusion front. , 2001, Physical review letters.

[19]  Claude Aslangul Quantum dynamics of a particle with a spin-dependent velocity , 2005 .

[20]  H. Berg Random Walks in Biology , 2018 .

[21]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[22]  T. Geisel,et al.  What Determines the Spreading of a Wave Packet , 1996, cond-mat/9611006.

[23]  Andris Ambainis,et al.  Quantum walks driven by many coins , 2002, quant-ph/0210161.

[24]  Pseudo memory effects, majorization and entropy in quantum random walks , 2004, quant-ph/0402187.

[25]  Sidney Redner,et al.  Novel superuniversal behavior of a random-walk model , 1983 .

[26]  R. Mosseri,et al.  Quantum dynamics in quasiperiodic systems , 1995 .

[27]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[28]  Barry C. Sanders,et al.  Quantum quincunx in cavity quantum electrodynamics , 2003 .

[29]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[30]  Francesco Petruccione,et al.  Non-Markovian dynamics of a qubit , 2006 .

[31]  Bassano Vacchini,et al.  Quantum semi-Markov processes. , 2008, Physical review letters.

[32]  John Watrous Quantum Simulations of Classical Random Walks and Undirected Graph Connectivity , 2001, J. Comput. Syst. Sci..

[33]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[34]  Completely positive post-Markovian master equation via a measurement approach , 2004, quant-ph/0404077.

[35]  H. Stanley,et al.  Effect of trends on detrended fluctuation analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Viv Kendon,et al.  Decoherence versus entanglement in coined quantum walks , 2006, quant-ph/0612229.

[37]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[38]  Vivien M. Kendon,et al.  Decoherence in quantum walks – a review , 2006, Mathematical Structures in Computer Science.

[39]  Ofer Biham,et al.  One-dimensional quantum walk with unitary noise , 2003 .

[40]  R. Siri,et al.  Markovian Behaviour and Constrained Maximization of the Entropy in Chaotic Quantum Systems , 2003 .

[41]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[42]  Havlin,et al.  Swelling-collapse transition of self-attracting walks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[44]  R. Siri,et al.  Decoherence in the quantum walk on the line , 2004, quant-ph/0403192.

[45]  Mark Hillery,et al.  Quantum walks with random phase shifts , 2006, quant-ph/0607092.

[46]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[47]  Sheng-You Huang,et al.  Random walk with memory enhancement and decay. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[49]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[50]  Geisel,et al.  Slow decay of temporal correlations in quantum systems with Cantor spectra. , 1992, Physical review letters.

[51]  Josef Honerkamp,et al.  Statistical Physics: An Advanced Approach with Applications , 1998 .

[52]  R. Siri,et al.  Quantum random walk on the line as a Markovian process , 2004 .