From self-sorted coordination libraries to networking nanoswitches for catalysis.

This feature article sketches our long way from the development of dynamic heteroleptic coordination motifs to the self-sorting of multi-component libraries and finally the design of a new family of triangular nanomechanical switches, which are useful for ON-OFF control of catalysis and in bidirectional communication. Due to their orthogonal switching stations, the nanoswitches have evolved as powerful toggles to even control two catalytic processes in an alternate manner, ON-OFF photosensitization and redox-controlled communication in small networks. The near future will show whether these nanoswitches can be interdependently linked together in autonomously regulated catalytic networks.

[1]  S. Samanta,et al.  Four-component supramolecular nanorotors. , 2013, Journal of the American Chemical Society.

[2]  Timothy R. Cook,et al.  Self-assembly of triangular and hexagonal molecular necklaces. , 2014, Journal of the American Chemical Society.

[3]  Xiaopeng Li,et al.  From supramolecular triangle to heteroleptic rhombus: a simple bridge can make a difference. , 2012, Chemical communications.

[4]  A. Credi,et al.  Light-operated machines based on threaded molecular structures. , 2014, Topics in current chemistry.

[5]  Xiaohong Li,et al.  From trigonal bipyramidal to platonic solids: self-assembly and self-sorting study of terpyridine-based 3D architectures. , 2014, Journal of the American Chemical Society.

[6]  R. Nolte,et al.  Functional interlocked systems. , 2014, Chemical Society reviews.

[7]  Marina M. Safont-Sempere,et al.  Self-sorting phenomena in complex supramolecular systems. , 2011, Chemical reviews.

[8]  S. Otto,et al.  Dynamic combinatorial libraries: new opportunities in systems chemistry. , 2011, Chemical communications.

[9]  S. Matile,et al.  Functional systems with orthogonal dynamic covalent bonds. , 2014, Chemical Society reviews.

[10]  Piotr Nowak,et al.  Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry. , 2013, Journal of the American Chemical Society.

[11]  L. Isaacs,et al.  Self-sorting: the exception or the rule? , 2003, Journal of the American Chemical Society.

[12]  H. Nishihara,et al.  Tuning-up and driving a redox-active rotor. , 2011, Chemical communications.

[13]  Ying Han,et al.  Self-sorting behavior of a four-component host-guest system and its incorporation into a linear supramolecular alternating copolymer. , 2015, Chemical communications.

[14]  Wei Jiang,et al.  Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. , 2015, Chemical Society reviews.

[15]  Itamar Willner,et al.  DNA-based machines. , 2014, Topics in current chemistry.

[16]  Uwe Pischel,et al.  Molecules with a sense of logic: a progress report. , 2015, Chemical Society reviews.

[17]  A. Hashidzume,et al.  Cyclodextrin-based molecular machines. , 2014, Topics in current chemistry.

[18]  M. Schmittel,et al.  Orthogonality in discrete self-assembly--survey of current concepts. , 2013, Chemical Society reviews.

[19]  Jiahai Shi,et al.  Mechanism for Controlling the Dimer-Monomer Switch and Coupling Dimerization to Catalysis of the Severe Acute Respiratory Syndrome Coronavirus 3C-Like Protease , 2008, Journal of Virology.

[20]  Jean Weiss,et al.  Synthesis of biscopper(I) [3]-catenates: multiring interlocked coordinating systems. , 1985, Journal of the American Chemical Society.

[21]  C. Bochet Orthogonal Photolysis of Protecting Groups. , 2001, Angewandte Chemie.

[22]  C. Schalley,et al.  Integrative self-sorting is a programming language for high level self-assembly , 2009, Proceedings of the National Academy of Sciences.

[23]  H. Nishihara,et al.  Intramolecular electron arrangement with a rotative trigger. , 2009, Journal of the American Chemical Society.

[24]  C. Schalley,et al.  Integrative self-sorting: construction of a cascade-stoppered hetero[3]rotaxane. , 2008, Journal of the American Chemical Society.

[25]  Jonathan R. Nitschke,et al.  Systems chemistry: Molecular networks come of age , 2009, Nature.

[26]  William R. Dichtel,et al.  High hopes: can molecular electronics realise its potential? , 2012, Chemical Society reviews.

[27]  M. Sliwa,et al.  New heteroleptic bis-phenanthroline copper(I) complexes with dipyridophenazine or imidazole fused phenanthroline ligands: spectral, electrochemical, and quantum chemical studies. , 2011, Inorganic chemistry.

[28]  Y. Li,et al.  Cation-triggered switchable asymmetric catalysis with chiral Aza-CrownPhos. , 2015, Angewandte Chemie.

[29]  M. Schmittel,et al.  From an eight-component self-sorting algorithm to a trisheterometallic scalene triangle. , 2010, Journal of the American Chemical Society.

[30]  S. Neogi,et al.  Dynamic heteroleptic metal-phenanthroline complexes: from structure to function. , 2014, Dalton transactions.

[31]  S. Benkovic,et al.  Relating protein motion to catalysis. , 2006, Annual review of biochemistry.

[32]  M. Schmittel,et al.  A monomer-dimer nanoswitch that mimics the working principle of the SARS-CoV 3CLpro enzyme controls copper-catalysed cyclopropanation. , 2014, Dalton transactions.

[33]  Kenneth Showalter,et al.  Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos , 1996 .

[34]  Michael Schmittel,et al.  A trio of nanoswitches in redox-potential controlled communication. , 2014, Chemical communications.

[35]  M. Schmittel,et al.  Scaffolding a cage-like 3D framework by coordination and constitutional dynamic chemistry. , 2011, Organic letters.

[36]  D. Leigh,et al.  A switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral secondary amine. , 2014, Journal of the American Chemical Society.

[37]  A. Credi,et al.  Light-powered molecular devices and machines , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[38]  J. F. Stoddart,et al.  Stimulated release of size-selected cargos in succession from mesoporous silica nanoparticles. , 2012, Angewandte Chemie.

[39]  H. Nishihara,et al.  Stimuli-responsive pyrimidine ring rotation in copper complexes for switching their physical properties. , 2013, Physical chemistry chemical physics : PCCP.

[40]  A. Credi,et al.  Light to investigate (read) and operate (write) molecular devices and machines. , 2014, Chemical Society reviews.

[41]  R. Scopelliti,et al.  Multicomponent assembly of boronic acid based macrocycles and cages. , 2008, Angewandte Chemie.

[42]  N. Hirokawa,et al.  Kinesin superfamily motor proteins and intracellular transport , 2009, Nature Reviews Molecular Cell Biology.

[43]  M. Herderich,et al.  Heteroleptic silver(I) and zinc(II) bis(phenanthroline) complexes , 2000 .

[44]  Hendrik Sielaff,et al.  Torque generation and elastic power transmission in the rotary FOF1-ATPase , 2009, Nature.

[45]  B. Moore Bifunctional and moonlighting enzymes: lighting the way to regulatory control. , 2004, Trends in plant science.

[46]  H. Wagenknecht,et al.  Mesityl phenanthroline-modified 2'-deoxyuridine for heteroleptic complexes in metal ion-mediated assembly of DNA. , 2015, Dalton transactions.

[47]  J. Bats,et al.  Combining dynamic heteroleptic complex formation with constitutional dynamic synthesis: a facile way to M3LL' cage assemblies. , 2009, Inorganic chemistry.

[48]  A. Credi,et al.  Molecular Devices and Machines , 2007, New Frontiers in Nanochemistry.

[49]  Michael Schmittel,et al.  Bidirectional chemical communication between nanomechanical switches. , 2014, Angewandte Chemie.

[50]  M. Schmittel,et al.  Degree of molecular self-sorting in multicomponent systems. , 2012, Organic & biomolecular chemistry.

[51]  K. Rissanen,et al.  Cyclic [2]pseudorotaxane tetramers consisting of two rigid rods threaded through two bis-macrocycles: copper(I)-templated synthesis and X-ray structure studies. , 2008, Journal of the American Chemical Society.

[52]  M. Schmittel,et al.  Synthesis and Coordination Properties of 6,6'-Dimesityl-2,2'-bipyridine , 1999 .

[53]  Peter J Stang,et al.  Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. , 2011, Chemical reviews.

[54]  J. Sauvage,et al.  Copper-complexed catenanes and rotaxanes in motion: 15 years of molecular machines. , 2010, Dalton transactions.

[55]  M. Young,et al.  A supramolecular sorting hat: stereocontrol in metal-ligand self-assembly by complementary hydrogen bonding. , 2014, Angewandte Chemie.

[56]  Daiki Hattori,et al.  Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase , 2011, Nature.

[57]  R. Dean Astumian Life’s Ratchet: How Molecular Machines Extract Order from Chaos , 2013 .

[58]  C. J. McAdam,et al.  Chemically and electrochemically induced expansion and contraction of a ferrocene rotor. , 2015, Chemical communications.

[59]  H. Schönherr,et al.  Preparation of a poly-nanocage dynamer: correlating the growth of polymer strands using constitutional dynamic chemistry and heteroleptic aggregation. , 2012, Journal of the American Chemical Society.

[60]  M. Schmittel,et al.  From 2-fold completive to integrative self-sorting: a five-component supramolecular trapezoid. , 2009, Journal of the American Chemical Society.

[61]  H. Nishihara,et al.  A single molecular system gating electron transfer by ring inversion of a methylpyridylpyrimidine ligand on copper. , 2009, Journal of the American Chemical Society.

[62]  D. Ingber,et al.  Cellular mechanotransduction: putting all the pieces together again , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[63]  H. Schulman,et al.  The multifunctional Ca2+/calmodulin-dependent protein kinases. , 1993, Current opinion in cell biology.

[64]  C. Campbell,et al.  Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. , 2011, Angewandte Chemie.

[65]  Zongxi Li,et al.  Mesoporous silica nanoparticles in biomedical applications. , 2012, Chemical Society reviews.

[66]  Maarten M. J. Smulders,et al.  Integrative self-sorting synthesis of a Fe8Pt6L24 cubic cage. , 2012, Angewandte Chemie.

[67]  A. A. Schilt Analytical applications of 1, 10-phenanthroline and related compounds , 1969 .

[68]  C. Schalley,et al.  Pseudorotaxanes with self-sorted sequence and stereochemical orientation. , 2013, Angewandte Chemie.

[69]  M. Schmittel,et al.  Dual coordination in ditopic azabipyridines and azaterpyridines as a key for reversible switching. , 2013, Dalton transactions.

[70]  M. Schmittel,et al.  A fully dynamic five-component triangle via self-sorting. , 2010, Chemical communications.

[71]  N. Bampos,et al.  Synthesis of a four-component [3]catenane using three distinct noncovalent interactions. , 2013, Organic & biomolecular chemistry.

[72]  Kazuhiko Kinosita,et al.  Controlled rotation of the F1-ATPase reveals differential and continuous binding changes for ATP synthesis , 2012, Nature Communications.

[73]  J. F. Stoddart,et al.  Rotaxane-based molecular muscles. , 2014, Accounts of chemical research.

[74]  R. S. Kishore,et al.  From supramolecular porphyrin tweezers to dynamic A(n)B(m)C(l)D(k) multiporphyrin arrangements through orthogonal coordination. , 2006, Chemistry.

[75]  M. Schmittel,et al.  From 3-fold completive self-sorting of a nine-component library to a seven-component scalene quadrilateral. , 2013, Journal of the American Chemical Society.

[76]  Hans Bisswanger,et al.  Enzyme Kinetics: Principles and Methods , 2002 .

[77]  Ivan Aprahamian,et al.  A switching cascade of hydrazone-based rotary switches through coordination-coupled proton relays , 2012, Nature Chemistry.

[78]  A V Eliseev,et al.  Dynamic Combinatorial Chemistry , 2001, Science.

[79]  L. Isaacs,et al.  Social self-sorting in aqueous solution. , 2004, The Journal of organic chemistry.

[80]  R. Astumian,et al.  Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. , 2015, Biophysical journal.

[81]  K. Gordon,et al.  Heteroleptic Cu(I) bis-diimine complexes of 6,6'-dimesityl-2,2'-bipyridine: a structural, theoretical and spectroscopic study. , 2013, Inorganic chemistry.

[82]  P. Stang,et al.  Self-organization in coordination-driven self-assembly. , 2009, Accounts of chemical research.

[83]  M. Schmittel,et al.  Reversible ON/OFF nanoswitch for organocatalysis: mimicking the locking and unlocking operation of CaMKII. , 2012, Angewandte Chemie.

[84]  M. Weck,et al.  Engineering orthogonality in supramolecular polymers: from simple scaffolds to complex materials. , 2014, Accounts of chemical research.

[85]  J. Lehn,et al.  Self-recognition in helicate self-assembly: spontaneous formation of helical metal complexes from mixtures of ligands and metal ions. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Masasuke Yoshida,et al.  ATP synthase — a marvellous rotary engine of the cell , 2001, Nature Reviews Molecular Cell Biology.

[87]  J. Bats,et al.  A six-component metallosupramolecular pentagon via self-sorting. , 2014, Chemical communications.

[88]  Xiao-Yu Hu,et al.  Dynamic supramolecular complexes constructed by orthogonal self-assembly. , 2014, Accounts of chemical research.

[89]  M. Boujtita,et al.  First application of the HETPHEN concept to new heteroleptic bis(diimine) copper(I) complexes as sensitizers in dye sensitized solar cells. , 2013, Dalton transactions.

[90]  Pier Luigi Gentili,et al.  Belousov-Zhabotinsky "Chemical Neuron" as a Binary and Fuzzy Logic Processor , 2012, Int. J. Unconv. Comput..

[91]  J. Bats,et al.  A five-component nanorotor with speed regulation. , 2014, Chemical communications.

[92]  R. Dawson,et al.  Structure of a bacterial multidrug ABC transporter , 2006, Nature.

[93]  M. Fisher,et al.  Molecular motors: a theorist's perspective. , 2007, Annual review of physical chemistry.

[94]  M. Schmittel,et al.  Stable mixed phenanthroline copper(i) complexes. Key building blocks for supramolecular coordination chemistry , 1997 .

[95]  M. Schmittel,et al.  Redox-dependent self-sorting toggles a rotary nanoswitch. , 2015, Organic & biomolecular chemistry.

[96]  C. Forsyth,et al.  Investigations of rotamers in diaxial Sn(IV)porphyrin phenolates—towards a molecular timepiece , 2008 .

[97]  Euan R Kay,et al.  Rise of the Molecular Machines , 2015, Angewandte Chemie.

[98]  D. Leigh,et al.  Artificial switchable catalysts. , 2015, Chemical Society reviews.

[99]  M. Schmittel,et al.  A toggle nanoswitch alternately controlling two catalytic reactions. , 2014, Angewandte Chemie.

[100]  Alberto Credi,et al.  Light operated molecular machines. , 2011, Chemical communications.

[101]  M. Schmittel,et al.  A reversible nanoswitch as an ON-OFF photocatalyst. , 2012, Chemical communications.

[102]  Yu Liu,et al.  Self-sorting of four organic molecules into a heterowheel polypseudorotaxane. , 2013, Chemistry.

[103]  H. Nishihara,et al.  Reversible copper(II)/(I) electrochemical potential switching driven by visible light-induced coordinated ring rotation. , 2012, Journal of the American Chemical Society.

[104]  Wesley R. Browne,et al.  Molecular Switches: FERINGA:MOL.SWIT.2ED 2VOL O-BK , 2011 .

[105]  J. F. Stoddart,et al.  Great expectations: can artificial molecular machines deliver on their promise? , 2012, Chemical Society reviews.

[106]  Michael King,et al.  Process Control: A Practical Approach , 2011 .

[107]  Heteroleptic metallosupramolecular complexes of bodipy dyes as energy transfer cassettes. , 2012, Organic letters.

[108]  T. Aida,et al.  Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. , 2005, Chemical reviews.

[109]  M. Shionoya,et al.  Ranging correlated motion (1.5 nm) of two coaxially arranged rotors mediated by helix inversion of a supramolecular transmitter. , 2008, Journal of the American Chemical Society.

[110]  Jean-Pierre Sauvage,et al.  Transition metal-complexed catenanes and rotaxanes as molecular machine prototypes. , 2005, Chemical communications.

[111]  Ulrich S. Schubert,et al.  Modern Terpyridine Chemistry: SCHUBERT: MODERN TERPYRIDINE CHEMISTRY O-BK , 2006 .

[112]  D. Whitten,et al.  Photochemistry of metalloporphyrin complexes. Ligand photoisomerization via intramolecular energy transfer. , 1972, Journal of the American Chemical Society.

[113]  M. Fujita,et al.  Noncovalent tailoring of the binding pocket of self-assembled cages by remote bulky ancillary groups. , 2013, Journal of the American Chemical Society.

[114]  C. Dietrich-Buchecker,et al.  Synthesis of a doubly interlocked [2]-catenane. , 1994, Journal of the American Chemical Society.