A GPU-Accelerated Filtered Density Function Simulator of Turbulent Reacting Flows

A new computational methodology is developed for large eddy simulation (LES) of turbulent reacting flows using graphic processing units (GPUs). The LES is based on the filtered density function (FDF) of the scalar-composition in conjunction with a discontinuous Galerkin (DG) discretisation scheme on a structured rectangular mesh. This hybrid solver is developed in a manner suitable for GPU computing. The simulator, as devised, is shown to be of the order of 200 times faster than the serial CPU-based calculations; facilitating the use of FDF for practical applications. The consistency and the accuracy of the methodology are demonstrated by simulations of a temporally developing mixing layer, under both non-reacting and reacting conditions.

[1]  Kyle E. Niemeyer,et al.  Recent progress and challenges in exploiting graphics processors in computational fluid dynamics , 2013, The Journal of Supercomputing.

[2]  S. Scott Collis,et al.  Discontinuous Galerkin Methods for Turbulence Simulation , 2002 .

[3]  M. Januszewski,et al.  Accelerating numerical solution of stochastic differential equations with CUDA , 2009, Comput. Phys. Commun..

[4]  H. Pitsch LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION , 2006 .

[5]  D. Haworth Progress in probability density function methods for turbulent reacting flows , 2010 .

[6]  S. Sammak,et al.  Langevin Simulation of Turbulent Combustion , 2017 .

[7]  Timothy C. Warburton,et al.  Nodal discontinuous Galerkin methods on graphics processors , 2009, J. Comput. Phys..

[8]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[9]  M. Pfitzner,et al.  A Fully Consistent Hybrid Les/Rans Conditional Transported Pdf Method for Non-premixed Reacting Flows , 2019, Combustion Science and Technology.

[10]  Martin Fuhry,et al.  Discontinuous Galerkin methods on graphics processing units for nonlinear hyperbolic conservation laws , 2016, ArXiv.

[11]  E. O'brien,et al.  The probability density function (pdf) approach to reacting turbulent flows , 1980 .

[12]  Kyle E. Niemeyer,et al.  Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs , 2013, J. Comput. Phys..

[13]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[14]  Zhuyin Ren,et al.  Modern Developments in Filtered Density Function , 2020 .

[15]  Daniel Livescu,et al.  Self-contained filtered density function , 2017 .

[16]  Peyman Givi,et al.  Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion , 2006 .

[17]  Michael J. Brazell,et al.  Discontinuous Galerkin-Monte Carlo Solver for Large Eddy Simulation of Compressible Turbulent Flows , 2017 .

[18]  Peyman Givi,et al.  Massively Parallel FDF Simulation of Turbulent Reacting Flows , 2015 .

[19]  Xiaoyu Li,et al.  Multi-Layer Graph Generative Model Using AutoEncoder for Recommendation Systems , 2019 .

[20]  Xian Wang,et al.  Direct Numerical Simulation and Large Eddy Simulation on a Turbulent Wall-Bounded Flow Using Lattice Boltzmann Method and Multiple GPUs , 2014 .

[21]  S. Pope Small scales, many species and the manifold challenges of turbulent combustion , 2013 .

[22]  A. P. Siebesma,et al.  Weather Forecasting Using GPU-Based Large-Eddy Simulations , 2015 .

[23]  Nancy Hitschfeld-Kahler,et al.  A Survey on Parallel Computing and its Applications in Data-Parallel Problems Using GPU Architectures , 2014 .

[24]  Rainald Löhner,et al.  Running unstructured grid‐based CFD solvers on modern graphics hardware , 2011 .

[25]  Ewald Krämer,et al.  A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows , 2008 .

[26]  Robert W. Bilger,et al.  Future progress in turbulent combustion research , 2000 .

[27]  Timothy C. Warburton,et al.  High-Order Discontinuous Galerkin Methods by GPU Metaprogramming , 2012, ArXiv.

[28]  S. L. Yilmaz,et al.  An Irregularly Portioned FDF Simulator , 2013, SIAM J. Sci. Comput..

[29]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[30]  I. Büsching,et al.  A stochastic differential equation code for multidimensional Fokker-Planck type problems , 2012, Comput. Phys. Commun..

[31]  Stephen B. Pope,et al.  Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent flows , 2009 .

[32]  Ugo Piomelli,et al.  Large-eddy simulation: achievements and challenges , 1999 .

[33]  Michael J. Brazell,et al.  A hybrid DG-Monte Carlo FDF simulator , 2016 .

[34]  Inanc Senocak,et al.  CUDA Implementation of a Navier-Stokes Solver on Multi-GPU Desktop Platforms for Incompressible Flows , 2009 .

[35]  R Gandham,et al.  GPU Accelerated Discontinuous Galerkin Methods for Shallow Water Equations , 2014, 1403.1661.