An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system

In this paper we describe an efficient algorithm, fully implemented in the Maple computer algebra system, that computes the exponential part of a formal fundamental matrix solution of a linear differential system having a singularity of pole type at the origin.

[1]  P. Deligne,et al.  Equations differentielles à points singuliers reguliers , 1970 .

[2]  Moulay A. Barkatou,et al.  Rational Newton Algorithm for Computing Formal Solutions of Linear Differential Equations , 1988, ISSAC.

[3]  A. Hilali,et al.  Un algorithme de calcul de l'invariant de Katz d'un système différentiel linéaire , 1986 .

[4]  B. Malgrange,et al.  Remarques sur les équations différentielles à points singuliers irréguliers , 1979 .

[5]  H. L. Turrittin Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point , 1955 .

[6]  Moulay A. Barkatou,et al.  An algorithm for computing a companion block diagonal form for a system of linear differential equations , 1993, Applicable Algebra in Engineering, Communication and Computing.

[7]  W. Wasow Asymptotic expansions for ordinary differential equations , 1965 .

[8]  D. A. Lutz,et al.  On the identification and stability of formal invariants for singular differential equations , 1985 .

[9]  Frances Thorndike Cope Formal Solutions of Irregular Linear Differential Equations. Part II , 1934 .

[10]  Guoting Chen,et al.  An algorithm for computing the formal solutions of differential systems in the neighborhood of an irregular singular point , 1990, ISSAC '90.

[11]  Evelyne Tournier Solutions formelles d'équations différentielles‎ : le logiciel de calcul formel DESIR‎ : étude théorique et réalisation. (Differential equations formal solutions : scheme and realization of a software for a formal calculation system) , 1987 .

[13]  Jean-Pierre Ramis,et al.  Théorèmes d’indices Gevrey pour les équations différentielles ordinaires , 1984 .

[14]  Donald G. Babbitt,et al.  Formal reduction theory of meromorphic differential equations: a group theoretic view. , 1983 .

[15]  Abdelaziz Hilali Solutions formelles de systèmes différentiels linéaires au voisinage d'un point singulier. (Formal solutions of linear differential systems at a singular point) , 1987 .

[16]  Ron Sommeling,et al.  Characteristic classes for irregular singularities , 1994, ISSAC '94.

[17]  J. Moser,et al.  The order of a singularity in Fuchs' theory , 1959 .