Considerations on variability in acoustic measurements in timber property assessment

[1]  G. Íñiguez-González,et al.  Cross Laminated Timber (CLT) manufactured with European oak recovered from demolition: Structural properties and non-destructive evaluation , 2022, Construction and Building Materials.

[2]  F. Arriaga,et al.  Prediction of the mechanical properties of timber members in existing structures using the dynamic modulus of elasticity and visual grading parameters , 2022, Construction and Building Materials.

[3]  Michele Brunetti,et al.  Geometric representation of the irregular cross-section of old timber elements: Comparison of different approaches for mechanical characterisation , 2021 .

[4]  F. Arriaga,et al.  The influence of cross-section variation on bending stiffness assessment in existing timber structures , 2020 .

[5]  F. Arriaga,et al.  Timber moisture content adjustment factors for nondestructive testing (NDT): acoustic, vibration and probing techniques , 2020 .

[6]  Hélder S. Sousa,et al.  Combination of non-destructive tests for assessing decay in existing timber elements , 2020, Nondestructive Testing and Evaluation.

[7]  F. Arriaga,et al.  Improving density estimation in large cross-section timber from existing structures optimizing the number of non-destructive measurements , 2019, Construction and Building Materials.

[8]  F. Arriaga,et al.  Influence of length on acoustic time-of-flight (ToF) measurement in built-in structures of Norway spruce timber , 2018, Holzforschung.

[9]  E. Niederleithinger,et al.  Nondestructive assessment and imaging methods for internal inspection of timber. A review. , 2018 .

[10]  E. Hermoso,et al.  Influence of moisture content on the results of penetration and withdrawal resistance measurements on softwoods , 2018 .

[11]  Rafael Gustavo Mansini Lorensani,et al.  Ultrasound grading of round Eucalyptus timber using the Brazilian standard , 2018, European Journal of Wood and Wood Products.

[12]  Francisco Arriaga,et al.  Influence of length and sensor positioning on acoustic time-of-flight (ToF) measurement in structural timber , 2017 .

[13]  Nicola Macchioni,et al.  Structural health assessment of historical timber structures combining non‐destructive techniques: The roof of Giotto's bell tower in Florence , 2017 .

[14]  Hélder S. Sousa,et al.  Non-destructive assessment, full-scale load-carrying tests and local interventions on two historic timber collar roof trusses , 2017 .

[15]  Alberto Cavalli,et al.  MOE and MOR assessment of in service and dismantled old structural timber , 2016 .

[16]  Guillermo Íñiguez-González,et al.  Visual Grading and Structural Properties Assessment of Large Cross-Section Pinus radiata D. Don Timber , 2016 .

[17]  Paulo B. Lourenço,et al.  Characterization of Cross-Sections from Old Chestnut Beams Weakened by Decay , 2014 .

[18]  Francisco Arriaga,et al.  Determination of the influence of size and position of knots on load capacity and stress distribution in timber beams of Pinus sylvestris using finite element model , 2013 .

[19]  Jaan Miljan,et al.  Investigation of the physical-mechanical properties of timber using ultrasound examination , 2012 .

[20]  Miguel Esteban,et al.  Influencia de las fendas en la resistencia de la madera estructural , 2010 .

[21]  E. Hermoso,et al.  Mechanical properties of structural maritime pine sawn timber from Galicia ( Pinus pinaster Ait. ssp. atlantica ) , 2009 .

[22]  Guillermo Iñiguez Gonzalez,et al.  Los métodos de vibración como herramienta no destructiva para la estimación de las propiedades resistentes de la madera aserrada estructural , 2007 .

[23]  V. Bucur,et al.  Acoustics of Wood , 1996 .