Asymptotic behavior of quantum walks with spatio-temporal coin fluctuations

Quantum walks subject to decoherence generically suffer the loss of their genuine quantum feature, a quadratically faster spreading compared to classical random walks. This intuitive statement has been verified analytically for certain models and is also supported by numerical studies of a variety of examples. In this paper we analyze the long-time behavior of a particular class of decoherent quantum walks, which, to the best of our knowledge, was only studied at the level of numerical simulations before. We consider a local coin operation which is randomly and independently chosen for each time step and each lattice site and prove that, under rather mild conditions, this leads to classical behavior: With the same scaling as needed for a classical diffusion the position distribution converges to a Gaussian, which is independent of the initial state. Our method is based on non-degenerate perturbation theory and yields an explicit expression for the covariance matrix of the asymptotic Gaussian in terms of the randomness parameters.

[1]  Edward Farhi,et al.  A Quantum Algorithm for the Hamiltonian NAND Tree , 2008, Theory Comput..

[2]  Tobias Schaetz,et al.  Experimental simulation and limitations of quantum walks with trapped ions , 2011, 1108.0913.

[3]  A Schreiber,et al.  Photons walking the line: a quantum walk with adjustable coin operations. , 2009, Physical review letters.

[4]  Alain Joye,et al.  Random Time-Dependent Quantum Walks , 2010, 1010.4006.

[5]  Alain Joye,et al.  Dynamical Localization of Quantum Walks in Random Environments , 2010, 1004.4130.

[6]  R. Srikanth,et al.  Symmetries and noise in quantum walk , 2007 .

[7]  J Glueckert,et al.  Quantum walk of a trapped ion in phase space. , 2009, Physical review letters.

[8]  Norio Konno,et al.  Localization of an inhomogeneous discrete-time quantum walk on the line , 2009, Quantum Inf. Process..

[9]  Andrew M. Childs,et al.  Discrete-Query Quantum Algorithm for NAND Trees , 2009, Theory Comput..

[10]  D. Gross,et al.  Index Theory of One Dimensional Quantum Walks and Cellular Automata , 2009, 0910.3675.

[11]  Volkher B. Scholz,et al.  Disordered Quantum Walks in one lattice dimension , 2011, 1101.2298.

[12]  Ofer Biham,et al.  One-dimensional quantum walk with unitary noise , 2003 .

[13]  P. Ribeiro,et al.  Aperiodic quantum random walks. , 2004, Physical review letters.

[14]  Norio Kawakami,et al.  Topological phases and delocalization of quantum walks in random environments , 2011, 1103.5545.

[15]  Mark Hillery,et al.  Quantum walks with random phase shifts , 2006, quant-ph/0607092.

[16]  C. Hagendorf,et al.  The Gaussian Free Field and SLE4 on Doubly Connected Domains , 2010, 1001.4501.

[17]  Henri Orland,et al.  Quantum Many-Particle Systems , 1988 .

[18]  C. Navarrete-Benlloch,et al.  Nonlinear optical Galton board , 2007 .

[19]  Andris Ambainis,et al.  Quantum walks driven by many coins , 2002, quant-ph/0210161.

[20]  Viv Kendon,et al.  Coined quantum walks on percolation graphs , 2010, 1006.1283.

[21]  R. Werner,et al.  Reversible quantum cellular automata , 2004, quant-ph/0405174.

[22]  Alain Joye,et al.  Correlated Markov Quantum Walks , 2011, 1110.4862.

[23]  Dieter Meschede,et al.  Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.

[24]  Generalized quantum walk in momentum space , 2004, quant-ph/0408183.

[25]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Julia Kempe,et al.  Quantum Random Walks Hit Exponentially Faster , 2002, ArXiv.

[27]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[28]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[29]  Tosio Kato Perturbation theory for linear operators , 1966 .

[30]  B. Svensson,et al.  H passivation of Li on Zn-site in ZnO: Positron annihilation spectroscopy and secondary ion mass spectrometry , 2011 .

[31]  Etsuo Segawa,et al.  LIMIT THEOREMS FOR QUANTUM WALKS DRIVEN BY MANY COINS , 2008, 0807.5074.

[32]  Albert H. Werner,et al.  Asymptotic evolution of quantum walks with random coin , 2010, 1009.2019.

[33]  R. Siri,et al.  Decoherence in the quantum walk on the line , 2004, quant-ph/0403192.

[34]  Andrzej Grudka,et al.  Quasiperiodic dynamics of a quantum walk on the line. , 2004, Physical review letters.

[35]  Julia Kempe,et al.  Discrete Quantum Walks Hit Exponentially Faster , 2003, RANDOM-APPROX.

[36]  Gregor E. Morfill,et al.  Effect of polarization force on the propagation of dust acoustic solitary waves , 2010 .

[37]  Norio Konno,et al.  One-dimensional discrete-time quantum walks on random environments , 2009, Quantum Inf. Process..

[38]  J. C. Soriano,et al.  Quantum walk with a time-dependent coin , 2006 .

[39]  R. Donangelo,et al.  Decoherent quantum walks driven by a generic coin operation , 2007, 0708.1297.

[40]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .