Non‐parametric regression with wavelet kernels
暂无分享,去创建一个
[1] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[2] G. Wahba,et al. Some results on Tchebycheffian spline functions , 1971 .
[3] R. Tibshirani,et al. Generalized additive models for medical research , 1986, Statistical methods in medical research.
[4] P. Mikusinski,et al. Introduction to Hilbert spaces with applications , 1990 .
[5] G. Wahba. Spline models for observational data , 1990 .
[6] Qinghua Zhang,et al. Wavelet networks , 1992, IEEE Trans. Neural Networks.
[7] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[8] Tomaso A. Poggio,et al. Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.
[9] Noga Alon,et al. Scale-sensitive dimensions, uniform convergence, and learnability , 1997, JACM.
[10] Qinghua Zhang,et al. Using wavelet network in nonparametric estimation , 1997, IEEE Trans. Neural Networks.
[11] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[12] Arne Kovac,et al. Extending the Scope of Wavelet Regression Methods by Coefficient-Dependent Thresholding , 2000 .
[13] S. Mallat. A wavelet tour of signal processing , 1998 .
[14] E. Candès. Harmonic Analysis of Neural Networks , 1999 .
[15] Massimiliano Pontil,et al. On the Vgamma Dimension for Regression in Reproducing Kernel Hilbert Spaces , 1999, ALT.
[16] Tomaso A. Poggio,et al. Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..
[17] Emmanuel J. Candès. Ridgelets and the Representation of Mutilated Sobolev Functions , 2001, SIAM J. Math. Anal..
[18] Jianqing Fan,et al. Regularization of Wavelet Approximations , 2001 .
[19] Guy P. Nason. Choice of wavelet smoothness, primary resolution and threshold in wavelet shrinkage , 2002, Stat. Comput..