In Silico Strategies in Tuberculosis Drug Discovery

Tuberculosis (TB) remains a serious threat to global public health, responsible for an estimated 1.5 million mortalities in 2018. While there are available therapeutics for this infection, slow-acting drugs, poor patient compliance, drug toxicity, and drug resistance require the discovery of novel TB drugs. Discovering new and more potent antibiotics that target novel TB protein targets is an attractive strategy towards controlling the global TB epidemic. In silico strategies can be applied at multiple stages of the drug discovery paradigm to expedite the identification of novel anti-TB therapeutics. In this paper, we discuss the current TB treatment, emergence of drug resistance, and the effective application of computational tools to the different stages of TB drug discovery when combined with traditional biochemical methods. We will also highlight the strengths and points of improvement in in silico TB drug discovery research, as well as possible future perspectives in this field.

[1]  C. Parsons THE AMERICAN CHEMICAL SOCIETY. , 1922, Science.

[2]  S. Jacobs Diabetes and tuberculosis. , 1949, Journal of the South Carolina Medical Association.

[3]  D. Koshland Application of a Theory of Enzyme Specificity to Protein Synthesis. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[4]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[5]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[6]  M. Karplus,et al.  Dynamics of folded proteins , 1977, Nature.

[7]  R. Cramer,et al.  Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. , 1988, Journal of the American Chemical Society.

[8]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[9]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[10]  T. Yeates,et al.  Verification of protein structures: Patterns of nonbonded atomic interactions , 1993, Protein science : a publication of the Protein Society.

[11]  M. Levitt,et al.  Protein unfolding pathways explored through molecular dynamics simulations. , 1993, Journal of molecular biology.

[12]  G. Klebe,et al.  Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. , 1994, Journal of medicinal chemistry.

[13]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[14]  Exploring QSAR. , 1995, Environmental science & technology.

[15]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[16]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[17]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[18]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[19]  D. Eisenberg,et al.  VERIFY3D: assessment of protein models with three-dimensional profiles. , 1997, Methods in enzymology.

[20]  T. Fujita Recent Success Stories Leading to Commercializable Bioactive Compounds with the Aid of Traditional QSAR Procedures , 1997 .

[21]  L. Soto-Ramírez,et al.  [Treatment of tuberculosis]. , 1997, Gaceta medica de Mexico.

[22]  C. Wermuth,et al.  Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998) , 1998 .

[23]  J. Sacchettini,et al.  Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. , 1998, Science.

[24]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[25]  Jonas Boström,et al.  Conformational energy penalties of protein-bound ligands , 1998, J. Comput. Aided Mol. Des..

[26]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[27]  S. H. Kaufmann,et al.  Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens , 1999, Molecular microbiology.

[28]  M. Murcko,et al.  Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. , 1999, Journal of medicinal chemistry.

[29]  C. Vilchèze,et al.  Crystal Structure of the Mycobacterium tuberculosis Enoyl-ACP Reductase, InhA, in Complex with NAD+ and a C16 Fatty Acyl Substrate* , 1999, The Journal of Biological Chemistry.

[30]  Pieter F. W. Stouten,et al.  Fast prediction and visualization of protein binding pockets with PASS , 2000, J. Comput. Aided Mol. Des..

[31]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[32]  J. Richardson,et al.  The penultimate rotamer library , 2000, Proteins.

[33]  P. Willett,et al.  Combination of molecular similarity measures using data fusion , 2000 .

[34]  J. Mestres,et al.  Similarity versus docking in 3D virtual screening , 2000 .

[35]  S. Asch,et al.  A population-based survey of tuberculosis symptoms: how atypical are atypical presentations? , 2000, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[36]  M. Moniatte,et al.  Towards the proteome of Mycobacterium tuberculosis , 2000, Electrophoresis.

[37]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[38]  Johannes H. Voigt,et al.  Comparison of the NCI Open Database with Seven Large Chemical Structural Databases , 2001, J. Chem. Inf. Comput. Sci..

[39]  H. Kubinyi Comparative Molecular Field Analysis (CoMFA) , 2002 .

[40]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[41]  Xi Chen,et al.  The Binding Database: data management and interface design , 2002, Bioinform..

[42]  R. Clark,et al.  Consensus scoring for ligand/protein interactions. , 2002, Journal of molecular graphics & modelling.

[43]  Gerhard Klebe,et al.  Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. , 2003, Journal of molecular biology.

[44]  N. Nikolova,et al.  International Union of Pure and Applied Chemistry, LUMO energy ± The Lowest Unoccupied Molecular Orbital (LUMO) , 2022 .

[45]  Manuel C. Peitsch,et al.  SWISS-MODEL: an automated protein homology-modeling server , 2003, Nucleic Acids Res..

[46]  Richard D. Taylor,et al.  Improved protein–ligand docking using GOLD , 2003, Proteins.

[47]  Charles L. Brooks,et al.  Detailed analysis of grid‐based molecular docking: A case study of CDOCKER—A CHARMm‐based MD docking algorithm , 2003, J. Comput. Chem..

[48]  Jie Liang,et al.  CASTp: Computed Atlas of Surface Topography of proteins , 2003, Nucleic Acids Res..

[49]  M. Nilges,et al.  Refinement of protein structures in explicit solvent , 2003, Proteins.

[50]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[51]  David Baker,et al.  Protein structure prediction and analysis using the Robetta server , 2004, Nucleic Acids Res..

[52]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[53]  P. Charifson,et al.  Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. , 2004, Journal of medicinal chemistry.

[54]  Thomas L. Madden,et al.  BLAST: at the core of a powerful and diverse set of sequence analysis tools , 2004, Nucleic Acids Res..

[55]  Jürgen Bajorath,et al.  Virtual screening methods that complement HTS. , 2004, Combinatorial chemistry & high throughput screening.

[56]  W Patrick Walters,et al.  A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance , 2004, Proteins.

[57]  M. Gerstein,et al.  Conformational changes associated with protein-protein interactions. , 2004, Current opinion in structural biology.

[58]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[59]  G. Cruciani,et al.  MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. , 2005, Journal of medicinal chemistry.

[60]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[61]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[62]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[63]  Janet M. Thornton,et al.  ProFunc: a server for predicting protein function from 3D structure , 2005, Nucleic Acids Res..

[64]  E. Jaeger,et al.  Comparison of automated docking programs as virtual screening tools. , 2005, Journal of Medicinal Chemistry.

[65]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[66]  Igor V. Tetko,et al.  Virtual Computational Chemistry Laboratory – Design and Description , 2005, J. Comput. Aided Mol. Des..

[67]  Erik L. L. Sonnhammer,et al.  Kalign – an accurate and fast multiple sequence alignment algorithm , 2005, BMC Bioinformatics.

[68]  O. N. de Souza,et al.  Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. , 2005, Biophysical journal.

[69]  J. Gready,et al.  Combining docking and molecular dynamic simulations in drug design , 2006, Medicinal research reviews.

[70]  T. Sterling,et al.  American Thoracic Society Documents An Official ATS Statement : Hepatotoxicity of Antituberculosis Therapy , 2006 .

[71]  D. Eisenberg,et al.  Unique Transcriptome Signature of Mycobacterium tuberculosis in Pulmonary Tuberculosis , 2006, Infection and Immunity.

[72]  Thierry Langer,et al.  High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening , 2007, J. Comput. Aided Mol. Des..

[73]  Pierre Tufféry,et al.  FAF-Drugs: free ADME/tox filtering of compound collections , 2006, Nucleic Acids Res..

[74]  B Coupez,et al.  Docking and scoring--theoretically easy, practically impossible? , 2006, Current medicinal chemistry.

[75]  E. Baker,et al.  The Structure of MbtI from Mycobacterium tuberculosis, the First Enzyme in the Biosynthesis of the Siderophore Mycobactin, Reveals It To Be a Salicylate Synthase , 2006, Journal of bacteriology.

[76]  D. van der Spoel,et al.  Blind docking of drug‐sized compounds to proteins with up to a thousand residues , 2006, FEBS letters.

[77]  Jian Ye,et al.  BLAST: improvements for better sequence analysis , 2006, Nucleic Acids Res..

[78]  Jie Liang,et al.  CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues , 2006, Nucleic Acids Res..

[79]  Thomas Stützle,et al.  PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design , 2006, ANTS Workshop.

[80]  Magdalena Bacilieri,et al.  Ligand-based drug design methodologies in drug discovery process: an overview. , 2006, Current drug discovery technologies.

[81]  Richa Agarwala,et al.  COBALT: constraint-based alignment tool for multiple protein sequences , 2007, Bioinform..

[82]  Piero Fariselli,et al.  eSLDB: eukaryotic subcellular localization database , 2006, Nucleic Acids Res..

[83]  Manfred J. Sippl,et al.  Thirty years of environmental health research--and growing. , 1996, Nucleic Acids Res..

[84]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[85]  Xin Wen,et al.  BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities , 2006, Nucleic Acids Res..

[86]  A. Vedani,et al.  VirtualToxLab - in silico prediction of the toxic potential of drugs and environmental chemicals: evaluation status and internet access protocol. , 2007, ALTEX.

[87]  S Sardari,et al.  Cheminformatics in anti-infective agents discovery. , 2007, Mini reviews in medicinal chemistry.

[88]  P. Garner,et al.  Directly observed therapy for treating tuberculosis. , 2015, The Cochrane database of systematic reviews.

[89]  V. Poroikov,et al.  PASS: identification of probable targets and mechanisms of toxicity , 2007, SAR and QSAR in environmental research.

[90]  Clemencia Pinilla,et al.  A Similarity‐based Data‐fusion Approach to the Visual Characterization and Comparison of Compound Databases , 2007, Chemical biology & drug design.

[91]  L. Guruprasad,et al.  Docking of phosphonate and trehalose analog inhibitors into M. tuberculosis mycolyltransferase Ag85C: Comparison of the two scoring fitness functions GoldScore and ChemScore, in the GOLD software , 2007, Bioinformation.

[92]  Maciej Haranczyk,et al.  Comparison of Similarity Coefficients for Clustering and Compound Selection , 2008, J. Chem. Inf. Model..

[93]  Maykel Pérez González,et al.  Applications of 2D descriptors in drug design: a DRAGON tale. , 2008, Current topics in medicinal chemistry.

[94]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[95]  Bernard R. Brooks,et al.  CHARMMing: A New, Flexible Web Portal for CHARMM , 2008, J. Chem. Inf. Model..

[96]  Ruth Nussinov,et al.  PharmaGist: a webserver for ligand-based pharmacophore detection , 2008, Nucleic Acids Res..

[97]  Hanna Geppert,et al.  Integrating Structure‐ and Ligand‐Based Virtual Screening: Comparison of Individual, Parallel, and Fused Molecular Docking and Similarity Search Calculations on Multiple Targets , 2008, ChemMedChem.

[98]  D. Havlir,et al.  Opportunities and challenges for HIV care in overlapping HIV and TB epidemics. , 2008, JAMA.

[99]  Nicholas A. Hamilton,et al.  LOCATE: a mammalian protein subcellular localization database , 2007, Nucleic Acids Res..

[100]  Anthony J Williams,et al.  Public chemical compound databases. , 2008, Current opinion in drug discovery & development.

[101]  David S. Wishart,et al.  DrugBank: a knowledgebase for drugs, drug actions and drug targets , 2007, Nucleic Acids Res..

[102]  Ajay N. Jain,et al.  Recommendations for evaluation of computational methods , 2008, J. Comput. Aided Mol. Des..

[103]  Weitao Yang,et al.  Insights into Current Limitations of Density Functional Theory , 2008, Science.

[104]  D. E. Clark What has virtual screening ever done for drug discovery? , 2008, Expert opinion on drug discovery.

[105]  Christian Stolte,et al.  TB database: an integrated platform for tuberculosis research , 2008, Nucleic Acids Res..

[106]  Mona Singh,et al.  Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure , 2009, PLoS Comput. Biol..

[107]  Johannes Söding,et al.  Fast and accurate automatic structure prediction with HHpred , 2009, Proteins.

[108]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[109]  A. Vedani,et al.  VirtualToxLab - in silico prediction of the toxic (endocrine-disrupting) potential of drugs, chemicals and natural products. Two years and 2,000 compounds of experience: a progress report. , 2009, ALTEX.

[110]  Yongbo Hu,et al.  Comparison of Several Molecular Docking Programs: Pose Prediction and Virtual Screening Accuracy , 2009, J. Chem. Inf. Model..

[111]  P. Escalante Tuberculosis , 1904, Annals of Internal Medicine.

[112]  Ian W. Davis,et al.  RosettaLigand docking with full ligand and receptor flexibility. , 2009, Journal of molecular biology.

[113]  Yang Zhang,et al.  I‐TASSER: Fully automated protein structure prediction in CASP8 , 2009, Proteins.

[114]  Thomas A. Halgren,et al.  Identifying and Characterizing Binding Sites and Assessing Druggability , 2009, J. Chem. Inf. Model..

[115]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[116]  Maria A Miteva,et al.  Structure-based virtual ligand screening: recent success stories. , 2009, Combinatorial chemistry & high throughput screening.

[117]  C. Barry,et al.  The mechanism of action of PA-824 , 2009, Communicative & integrative biology.

[118]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[119]  Vincent Le Guilloux,et al.  Fpocket: An open source platform for ligand pocket detection , 2009, BMC Bioinformatics.

[120]  Thomas Scior,et al.  Elucidating Isoniazid Resistance Using Molecular Modeling , 2009, J. Chem. Inf. Model..

[121]  Maciej Haranczyk,et al.  Comparison of Nonbinary Similarity Coefficients for Similarity Searching, Clustering and Compound Selection , 2009, J. Chem. Inf. Model..

[122]  Diego Prada-Gracia,et al.  Exploring the Free Energy Landscape: From Dynamics to Networks and Back , 2009, PLoS Comput. Biol..

[123]  Thomas Stützle,et al.  Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS , 2009, J. Chem. Inf. Model..

[124]  Hanna Geppert,et al.  Current Trends in Ligand-Based Virtual Screening: Molecular Representations, Data Mining Methods, New Application Areas, and Performance Evaluation , 2010, J. Chem. Inf. Model..

[125]  Rommie E. Amaro,et al.  Emerging methods for ensemble-based virtual screening. , 2010, Current topics in medicinal chemistry.

[126]  Predictive models for nucleoside bisubstrate analogs as inhibitors of siderophore biosynthesis in Mycobacterium tuberculosis: pharmacophore mapping and chemometric QSAR study , 2011, Molecular Diversity.

[127]  A. Indarto Theoretical Modelling and Mechanistic Study of the Formation and Atmospheric Transformations of Polycyclic Aromatic Compounds and Carbonaceous Particles , 2010 .

[128]  E. Baker,et al.  Inhibition Studies of Mycobacterium tuberculosis Salicylate Synthase (MbtI) , 2010, ChemMedChem.

[129]  Lorenz C. Blum,et al.  Chemical space as a source for new drugs , 2010 .

[130]  C. Sotriffer,et al.  Docking compared to 3D-pharmacophores: the scoring function challenge , 2010 .

[131]  Andreas Bender,et al.  Handbook of Chemoinformatics Algorithms , 2010 .

[132]  Yongqiang Zhu,et al.  Pharmacophore based drug design approach as a practical process in drug discovery. , 2010, Current computer-aided drug design.

[133]  Dominique Douguet,et al.  e-LEA3D: a computational-aided drug design web server , 2010, Nucleic Acids Res..

[134]  Santosh A. Khedkar,et al.  Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. , 2010, Current topics in medicinal chemistry.

[135]  Vincent Le Guilloux,et al.  fpocket: online tools for protein ensemble pocket detection and tracking , 2010, Nucleic Acids Res..

[136]  G. Hessler,et al.  The scaffold hopping potential of pharmacophores. , 2010, Drug discovery today. Technologies.

[137]  Richard A. Lewis,et al.  Three-dimensional pharmacophore methods in drug discovery. , 2010, Journal of medicinal chemistry.

[138]  C. Aldrich,et al.  Inhibitors of the Salicylate Synthase (MbtI) from Mycobacterium tuberculosis Discovered by High‐Throughput Screening , 2010, ChemMedChem.

[139]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[140]  Dennis M. Krüger,et al.  Comparison of Structure‐ and Ligand‐Based Virtual Screening Protocols Considering Hit List Complementarity and Enrichment Factors , 2010, ChemMedChem.

[141]  Antony J. Williams ChemSpider: Integrating Structure-Based Resources Distributed across the Internet , 2010 .

[142]  Daniela Schuster,et al.  3D pharmacophores as tools for activity profiling. , 2010, Drug discovery today. Technologies.

[143]  A. Izzo,et al.  Portrait of a Pathogen: The Mycobacterium tuberculosis Proteome In Vivo , 2010, PloS one.

[144]  Xiaoqin Zou,et al.  Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. , 2010, Physical chemistry chemical physics : PCCP.

[145]  Jitender Verma,et al.  3D-QSAR in drug design--a review. , 2010, Current topics in medicinal chemistry.

[146]  C. Ball,et al.  TB database 2010: overview and update. , 2010, Tuberculosis.

[147]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[148]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[149]  X. Barril,et al.  Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. , 2010, Journal of medicinal chemistry.

[150]  Sun Choi,et al.  Link between allosteric signal transduction and functional dynamics in a multisubunit enzyme: S-adenosylhomocysteine hydrolase. , 2011, Journal of the American Chemical Society.

[151]  Christoph A Sotriffer,et al.  Accounting for induced-fit effects in docking: what is possible and what is not? , 2011, Current topics in medicinal chemistry.

[152]  María Martín,et al.  Ongoing and future developments at the Universal Protein Resource , 2010, Nucleic Acids Res..

[153]  S. Cole,et al.  The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. , 2011, Tuberculosis.

[154]  Paolo Tosco,et al.  Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields , 2011, Journal of molecular modeling.

[155]  Modesto Orozco,et al.  Coarse-grained representation of protein flexibility. Foundations, successes, and shortcomings. , 2011, Advances in protein chemistry and structural biology.

[156]  Mark McGann,et al.  FRED Pose Prediction and Virtual Screening Accuracy , 2011, J. Chem. Inf. Model..

[157]  David Ryan Koes,et al.  Pharmer: Efficient and Exact Pharmacophore Search , 2011, J. Chem. Inf. Model..

[158]  Aurélien Grosdidier,et al.  SwissDock, a protein-small molecule docking web service based on EADock DSS , 2011, Nucleic Acids Res..

[159]  Yi-Ping Phoebe Chen,et al.  Structure-based drug design to augment hit discovery. , 2011, Drug discovery today.

[160]  Teodorico C. Ramalho,et al.  Molecular Modeling of Mycobacterium Tuberculosis dUTpase: Docking and Catalytic Mechanism Studies , 2011, Journal of biomolecular structure & dynamics.

[161]  Joel S. Freundlich,et al.  Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery. , 2011, Trends in Microbiology.

[162]  Nagamani Sukumar,et al.  Current trends in virtual high throughput screening using ligand-based and structure-based methods. , 2011, Combinatorial chemistry & high throughput screening.

[163]  Gregory L. Wilson,et al.  Integrating structure-based and ligand-based approaches for computational drug design. , 2011, Future medicinal chemistry.

[164]  G. Keserű,et al.  Integration of virtual and high throughput screening in lead discovery settings. , 2011, Combinatorial chemistry & high throughput screening.

[165]  VINCENT ZOETE,et al.  SwissParam: A fast force field generation tool for small organic molecules , 2011, J. Comput. Chem..

[166]  E. Rubin,et al.  Characterization and Transcriptome Analysis of Mycobacterium tuberculosis Persisters , 2011, mBio.

[167]  Berk Hess,et al.  Algorithm improvements for molecular dynamics simulations , 2011 .

[168]  Jean-Louis Reymond,et al.  Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 , 2012, J. Chem. Inf. Model..

[169]  Jürgen Bajorath,et al.  Extending the Activity Cliff Concept: Structural Categorization of Activity Cliffs and Systematic Identification of Different Types of Cliffs in the ChEMBL Database , 2012, J. Chem. Inf. Model..

[170]  Andreas Bender,et al.  Recognizing Pitfalls in Virtual Screening: A Critical Review , 2012, J. Chem. Inf. Model..

[171]  Dong Xu Protein Databases on the Internet , 2012, Current protocols in protein science.

[172]  Daniel Kuhn,et al.  DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment , 2012, Bioinform..

[173]  A. Vedani,et al.  VirtualToxLab - a platform for estimating the toxic potential of drugs, chemicals and natural products. , 2012, Toxicology and applied pharmacology.

[174]  E. Baker,et al.  Implications of binding mode and active site flexibility for inhibitor potency against the salicylate synthase from Mycobacterium tuberculosis. , 2012, Biochemistry.

[175]  Jie Shen,et al.  admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties , 2012, J. Chem. Inf. Model..

[176]  Guixia Liu,et al.  Performance Evaluation of 2D Fingerprint and 3D Shape Similarity Methods in Virtual Screening , 2012, J. Chem. Inf. Model..

[177]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[178]  Ajay N. Jain,et al.  Surflex-Dock: Docking benchmarks and real-world application , 2012, Journal of Computer-Aided Molecular Design.

[179]  S. Cole,et al.  Towards a new tuberculosis drug: pyridomycin – nature's isoniazid , 2012, EMBO molecular medicine.

[180]  David Ryan Koes,et al.  PocketQuery: protein–protein interaction inhibitor starting points from protein–protein interaction structure , 2012, Nucleic Acids Res..

[181]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[182]  Olga Tcheremenskaia,et al.  Environment and Health , 2004, Frontiers Research Topics.

[183]  Björn Krüger,et al.  The holistic integration of virtual screening in drug discovery. , 2013, Drug discovery today.

[184]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[185]  Malgorzata N. Drwal,et al.  Combination of ligand- and structure-based methods in virtual screening. , 2013, Drug discovery today. Technologies.

[186]  T. Blundell,et al.  Discovery of Schaeffer’s Acid Analogues as Lead Structures of Mycobacterium tuberculosis Type II Dehydroquinase Using a Rational Drug Design Approach , 2013, ChemMedChem.

[187]  R. Mahajan Bedaquiline: First FDA-approved tuberculosis drug in 40 years , 2013, International journal of applied & basic medical research.

[188]  J. Bajorath,et al.  Advancing the activity cliff concept , 2013 .

[189]  Thomas L. Madden,et al.  The BLAST Sequence Analysis Tool , 2013 .

[190]  I. Hamada van der Waals density functional made accurate , 2014 .

[191]  C. Supuran,et al.  3D-QSAR CoMFA studies on sulfonamide inhibitors of the Rv3588c β-carbonic anhydrase from Mycobacterium tuberculosis and design of not yet synthesized new molecules , 2014, Journal of enzyme inhibition and medicinal chemistry.

[192]  K. Dheda,et al.  Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. , 2014, The Lancet. Respiratory medicine.

[193]  J. Dearden,et al.  QSAR modeling: where have you been? Where are you going to? , 2014, Journal of medicinal chemistry.

[194]  C. Andrade,et al.  3D-QSAR approaches in drug design: perspectives to generate reliable CoMFA models. , 2014, Current computer-aided drug design.

[195]  F. Pavan,et al.  Manganese(II) complexes with thiosemicarbazones as potential anti-Mycobacterium tuberculosis agents. , 2014, Journal of inorganic biochemistry.

[196]  Yang Zhang,et al.  The I-TASSER Suite: protein structure and function prediction , 2014, Nature Methods.

[197]  Guidelines on the management of latent tuberculosis infection , 2014 .

[198]  Fabian Sievers,et al.  Clustal Omega, accurate alignment of very large numbers of sequences. , 2014, Methods in molecular biology.

[199]  Satya P. Gupta,et al.  A comparative 2D QSAR study on a series of hydroxamic acid-based histone deacetylase inhibitors vis-à-vis comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). , 2014, Indian journal of biochemistry & biophysics.

[200]  A. Becke Perspective: Fifty years of density-functional theory in chemical physics. , 2014, The Journal of chemical physics.

[201]  J. Bajorath,et al.  Follow up: Advancing the activity cliff concept, part II , 2014, F1000Research.

[202]  C. Leung,et al.  Smoking adversely affects treatment response, outcome and relapse in tuberculosis , 2014, European Respiratory Journal.

[203]  Nicola J. Ryan,et al.  Delamanid: First Global Approval , 2014, Drugs.

[204]  A. Onufriev,et al.  Speed of conformational change: comparing explicit and implicit solvent molecular dynamics simulations. , 2015, Biophysical journal.

[205]  Josep Ramón Goñi,et al.  Molecular dynamics simulations: advances and applications , 2015, Advances and applications in bioinformatics and chemistry : AABC.

[206]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[207]  F. Noé Beating the millisecond barrier in molecular dynamics simulations. , 2015, Biophysical journal.

[208]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[209]  Stephani Joy Y Macalino,et al.  Role of computer-aided drug design in modern drug discovery , 2015, Archives of Pharmacal Research.

[210]  Yang Zhang,et al.  I-TASSER server: new development for protein structure and function predictions , 2015, Nucleic Acids Res..

[211]  Arthur J Olson,et al.  Small-molecule library screening by docking with PyRx. , 2015, Methods in molecular biology.

[212]  Elena Papaleo,et al.  Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity , 2015, Front. Mol. Biosci..

[213]  R. Chaisson,et al.  Latent Mycobacterium tuberculosis infection. , 2015, The New England journal of medicine.

[214]  Anne-Claude Camproux,et al.  PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins , 2015, Nucleic Acids Res..

[215]  K. Berland,et al.  van der Waals forces in density functional theory: a review of the vdW-DF method , 2014, Reports on progress in physics. Physical Society.

[216]  William J. Allen,et al.  DOCK 6: Impact of new features and current docking performance , 2015, J. Comput. Chem..

[217]  Károly Héberger,et al.  Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? , 2015, Journal of Cheminformatics.

[218]  T. França,et al.  Homology modeling: an important tool for the drug discovery , 2015, Journal of biomolecular structure & dynamics.

[219]  J. Fraser,et al.  Keep on Moving: Discovering and Perturbing the Conformational Dynamics of Enzymes , 2014, Accounts of chemical research.

[220]  Adrià Cereto-Massagué,et al.  Molecular fingerprint similarity search in virtual screening. , 2015, Methods.

[221]  Ross J. Harris,et al.  Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries , 2015, European Respiratory Journal.

[222]  D. Fairlie,et al.  Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. , 2015, Journal of molecular graphics & modelling.

[223]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[224]  S. J. Y. Macalino,et al.  Toward antituberculosis drugs: in silico screening of synthetic compounds against Mycobacterium tuberculosis l,d-transpeptidase 2 , 2016, Drug design, development and therapy.

[225]  A. Vedani,et al.  VirtualToxLab: Exploring the Toxic Potential of Rejuvenating Substances Found in Traditional Medicines. , 2016, Methods in molecular biology.

[226]  P. Sandhu,et al.  The drug binding sites and transport mechanism of the RND pumps from Mycobacterium tuberculosis: Insights from molecular dynamics simulations. , 2016, Archives of biochemistry and biophysics.

[227]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in protein science.

[228]  Inho Choi,et al.  Computer Aided Drug Design: Success and Limitations. , 2016, Current pharmaceutical design.

[229]  Yvonne Koch,et al.  A Primer In Density Functional Theory , 2016 .

[230]  C. Colombo,et al.  A Second, Druggable Binding Site in UDP‐Galactopyranose Mutase from Mycobacterium tuberculosis? , 2016, Chembiochem : a European journal of chemical biology.

[231]  Yi Pan,et al.  HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-Based Approaches , 2016, J. Chem. Inf. Model..

[232]  Olivier Michielin,et al.  SwissSimilarity: A Web Tool for Low to Ultra High Throughput Ligand-Based Virtual Screening , 2016, J. Chem. Inf. Model..

[233]  R. Chaisson,et al.  Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. , 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[234]  D. Velmurugan,et al.  Docking-based virtual screening of known drugs against murE of Mycobacterium tuberculosis towards repurposing for TB , 2016, Bioinformation.

[235]  Matthew R. Laird,et al.  PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures , 2015, Nucleic Acids Res..

[236]  J. Tuszynski,et al.  Software for molecular docking: a review , 2017, Biophysical Reviews.

[237]  Jian Wan,et al.  Exploring the possible binding mode of trisubstituted benzimidazoles analogues in silico for novel drug designtargeting Mtb FtsZ , 2016, Medicinal Chemistry Research.

[238]  S. Hannongbua,et al.  Insight into the structural requirements of aminopyrimidine derivatives for good potency against both purified enzyme and whole cells of M. tuberculosis: combination of HQSAR, CoMSIA, and MD simulation studies , 2016, Journal of biomolecular structure & dynamics.

[239]  K. Lindorff-Larsen,et al.  Picosecond to Millisecond Structural Dynamics in Human Ubiquitin. , 2016, The journal of physical chemistry. B.

[240]  D. Jeon WHO Treatment Guidelines for Drug-Resistant Tuberculosis, 2016 Update: Applicability in South Korea , 2017, Tuberculosis and respiratory diseases.

[241]  Vesna Rastija,et al.  PyDescriptor : A new PyMOL plugin for calculating thousands of easily understandable molecular descriptors , 2017 .

[242]  S. J. Y. Macalino,et al.  In silico discovery and in vitro activity of inhibitors against Mycobacterium tuberculosis 7,8-diaminopelargonic acid synthase (Mtb BioA) , 2017, Drug design, development and therapy.

[243]  Huikun Zhang,et al.  Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening , 2017, J. Chem. Inf. Model..

[244]  V. Pande,et al.  Atomistic structural ensemble refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY , 2017, Scientific Reports.

[245]  K. Lam,et al.  Combinatorial chemistry in drug discovery. , 2017, Current opinion in chemical biology.

[246]  Differential flap dynamics in l,d-transpeptidase2 from mycobacterium tuberculosis revealed by molecular dynamics. , 2017, Molecular bioSystems.

[247]  V. Kovalev,et al.  The TB Portals: an Open-Access, Web-Based Platform for Global Drug-Resistant-Tuberculosis Data Sharing and Analysis , 2017, Journal of Clinical Microbiology.

[248]  J. Rehm,et al.  Alcohol consumption as a risk factor for tuberculosis: meta-analyses and burden of disease , 2017, European Respiratory Journal.

[249]  Dong-Sheng Cao,et al.  ChemSAR: an online pipelining platform for molecular SAR modeling , 2017, Journal of Cheminformatics.

[250]  Lisa K. Woolhiser,et al.  Development of a Novel Lead that Targets M. tuberculosis Polyketide Synthase 13 , 2017, Cell.

[251]  Olivier Michielin,et al.  SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules , 2017, Scientific Reports.

[252]  Vladimir Poroikov,et al.  MetaTox: Web Application for Predicting Structure and Toxicity of Xenobiotics' Metabolites , 2017, J. Chem. Inf. Model..

[253]  Ruben Abagyan,et al.  Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach , 2017, Journal of Computer-Aided Molecular Design.

[254]  Steven K. Burger,et al.  Exploring the substrate selectivity of human sEH and M. tuberculosis EHB using QM/MM , 2017, Structural Chemistry.

[255]  George Papadatos,et al.  The ChEMBL database in 2017 , 2016, Nucleic Acids Res..

[256]  Christopher B. Cooper,et al.  Antitubercular Nitroimidazoles Revisited: Synthesis and Activity of the Authentic 3-Nitro Isomer of Pretomanid , 2017, ACS medicinal chemistry letters.

[257]  Gautier Moroy,et al.  PatchSearch: A Fast Computational Method for Off-Target Detection , 2017, J. Chem. Inf. Model..

[258]  Lukas Zimmermann,et al.  A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. , 2017, Journal of molecular biology.

[259]  Tatsuya Takagi,et al.  Mordred: a molecular descriptor calculator , 2018, Journal of Cheminformatics.

[260]  Radka Svobodová Vařeková,et al.  PDBsum: Structural summaries of PDB entries , 2017, Protein science : a publication of the Protein Society.

[261]  D. Flower,et al.  In silico design of Mycobacterium tuberculosis epitope ensemble vaccines , 2018, Molecular immunology.

[262]  L. Chiarelli,et al.  New Chromane-Based Derivatives as Inhibitors of Mycobacterium tuberculosis Salicylate Synthase (MbtI): Preliminary Biological Evaluation and Molecular Modeling Studies , 2018, Molecules.

[263]  Q. Wang,et al.  Consensus scoring model for the molecular docking study of mTOR kinase inhibitor. , 2018, Journal of molecular graphics & modelling.

[264]  L. Chiarelli,et al.  Discovery and development of novel salicylate synthase (MbtI) furanic inhibitors as antitubercular agents. , 2018, European journal of medicinal chemistry.

[265]  M. Beckmann,et al.  Untargeted metabolomics reveals a new mode of action of pretomanid (PA-824) , 2018, Scientific Reports.

[266]  Wei Tian,et al.  CASTp 3.0: computed atlas of surface topography of proteins , 2018, Nucleic Acids Res..

[267]  Gabriela Bitencourt-Ferreira,et al.  Docking with SwissDock. , 2019, Methods in molecular biology.

[268]  Yadi Zhou,et al.  Correction to "admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties" , 2019, J. Chem. Inf. Model..

[269]  Vladimir Poroikov,et al.  Metatox - Web application for generation of metabolic pathways and toxicity estimation , 2019, J. Bioinform. Comput. Biol..

[270]  Wei Zheng,et al.  I-TASSER gateway: A protein structure and function prediction server powered by XSEDE , 2019, Future Gener. Comput. Syst..

[271]  Kara Dolinski,et al.  The BioGRID interaction database: 2019 update , 2018, Nucleic Acids Res..

[272]  Lukás Jendele,et al.  PrankWeb: a web server for ligand binding site prediction and visualization , 2019, Nucleic Acids Res..

[273]  K. Kuča,et al.  Molecular dynamics simulation and binding free energy studies of novel leads belonging to the benzofuran class inhibitors of Mycobacterium tuberculosis Polyketide Synthase 13 , 2019, Journal of biomolecular structure & dynamics.

[274]  Jie Li,et al.  admetSAR 2.0: web‐service for prediction and optimization of chemical ADMET properties , 2018, Bioinform..

[275]  Dhara M Chhatbar,et al.  CoMFA, CoMSIA, Topomer CoMFA, HQSAR, molecular docking and molecular dynamics simulations study of triazine morpholino derivatives as mTOR inhibitors for the treatment of breast cancer , 2019, Comput. Biol. Chem..

[276]  Eric J Topol,et al.  High-performance medicine: the convergence of human and artificial intelligence , 2019, Nature Medicine.