Van der Waals Interface Transistors as Light Sources with Bias Tunable Spectrum

Hugo Henck,1, 2 Diego Mauro,1, 2 Daniil Domaretskiy,1, 2 Marc Philippi,1, 2 Shahriar Memaran,3, 4 Wenkai Zheng,3, 4 Zhengguang Lu,3, 4 Dmitry Shcherbakov,5 Chun Ning Lau,5 Dmitry Smirnov,3, 4 Luis Balicas,3, 4 Kenji Watanabe,6 Takashi Taniguchi,7 Vladimir I. Fal’ko,8, 9 Ignacio Gutiérrez-Lezama,1, 2 Nicolas Ubrig,1, 2, ∗ and Alberto F. Morpurgo1, 2, † 1Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland 2Group of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland 3National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA 4Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA 5Department of Physics, The Ohio State University, Columbus, OH 43210 6Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 7International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 8National Graphene Institute, University of Manchester, Booth St E, M13 9PL, Manchester, UK 9Henry Royce Institute for Advanced Materials, M13 9PL, Manchester, UK (Dated: January 5, 2022)

[1]  Huanli Dong,et al.  Organic Light‐Emitting Transistors Entering a New Development Stage , 2021, Advanced materials.

[2]  A. Morpurgo,et al.  Ionic gate spectroscopy of 2D semiconductors , 2021, Nature Reviews Physics.

[3]  I. Radu,et al.  Understanding ambipolar transport in MoS2 field effect transistors: the substrate is the key , 2020, Nanotechnology.

[4]  A. Krier,et al.  Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunneling diode , 2020, Applied Physics Letters.

[5]  J. Howarth,et al.  Design of van der Waals interfaces for broad-spectrum optoelectronics , 2019, Nature Materials.

[6]  H. Schneider,et al.  Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties. , 2019, ACS applied materials & interfaces.

[7]  K. Novoselov,et al.  Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures , 2019, Nature Communications.

[8]  Seung Gi Seo,et al.  Low-Frequency Noise Characteristics in Multilayer MoTe2 FETs With Hydrophobic Amorphous Fluoropolymers , 2019, IEEE Electron Device Letters.

[9]  S. Haigh,et al.  Indirect to Direct Gap Crossover in Two-Dimensional InSe Revealed by Angle-Resolved Photoemission Spectroscopy. , 2019, ACS nano.

[10]  B. Gerardot,et al.  Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide , 2019, Nature Communications.

[11]  M. Lukin,et al.  Electrical control of interlayer exciton dynamics in atomically thin heterostructures , 2018, Science.

[12]  S. Haigh,et al.  Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructures , 2018, 2D Materials.

[13]  G. Eda,et al.  Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides , 2018, Advanced materials.

[14]  A. Morpurgo,et al.  Semiconducting van der Waals Interfaces as Artificial Semiconductors. , 2018, Nano letters.

[15]  Xiaoxi Zhu,et al.  Functional inks and printing of two-dimensional materials. , 2018, Chemical Society reviews.

[16]  Ming C. Wu,et al.  Large-area and bright pulsed electroluminescence in monolayer semiconductors , 2018, Nature Communications.

[17]  Kenji Watanabe,et al.  Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures , 2018, Nature Photonics.

[18]  K. Novoselov,et al.  Giant Quantum Hall Plateau in Graphene Coupled to an InSe van der Waals Crystal. , 2017, Physical review letters.

[19]  M. Nakano,et al.  Endeavor of Iontronics: From Fundamentals to Applications of Ion‐Controlled Electronics , 2017, Advanced materials.

[20]  Xiaodong Xu,et al.  Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.

[21]  V. Fal’ko,et al.  Electronic and optical properties of two-dimensional InSe from a DFT-parametrized tight-binding model , 2016, 1611.00262.

[22]  A. Morpurgo,et al.  Electroluminescence from indirect band gap semiconductor ReS2 , 2016, 1610.00895.

[23]  A. Morpurgo,et al.  Ambipolar Light-Emitting Transistors on Chemical Vapor Deposited Monolayer MoS₂. , 2015, Nano letters.

[24]  Udo Schwingenschlögl,et al.  Heterostructures of transition metal dichalcogenides , 2015 .

[25]  Hsin-Ying Chiu,et al.  Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. , 2014, ACS nano.

[26]  A. Morpurgo,et al.  Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals , 2014, 1407.1219.

[27]  S. Haigh,et al.  Heterostructures produced from nanosheet-based inks. , 2014, Nano letters.

[28]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[29]  Helmuth Berger,et al.  Mono- and bilayer WS2 light-emitting transistors. , 2014, Nano letters.

[30]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[31]  Junsheng Yu,et al.  Color-tunable and high-efficiency organic light-emitting diode by adjusting exciton bilateral migration zone , 2013 .

[32]  C. Frisbie,et al.  A pedagogical perspective on ambipolar FETs. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[34]  A. Morpurgo,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[35]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[36]  B. Wees,et al.  A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride , 2011, 1110.1045.

[37]  R. Capelli,et al.  Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. , 2010, Nature materials.

[38]  M. Henini,et al.  Upconversion electroluminescence in InAs quantum dot light-emitting diodes , 2008 .

[39]  Chihaya Adachi,et al.  High current density in light-emitting transistors of organic single crystals. , 2008, Physical review letters.

[40]  M. Muccini A bright future for organic field-effect transistors , 2006, Nature materials.

[41]  Michele Muccini,et al.  Ambipolar light-emitting organic field-effect transistor , 2004 .

[42]  V. Podzorov,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004, cond-mat/0401243.

[43]  Milton Feng,et al.  Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors , 2004 .

[44]  Heinz von Seggern,et al.  Light-emitting field-effect transistor based on a tetracene thin film. , 2003, Physical review letters.

[45]  E. van Veenendaal,et al.  Solution-processed ambipolar organic field-effect transistors and inverters , 2003, Nature materials.

[46]  K. O'Donnell,et al.  Temperature dependence of semiconductor band gaps , 1991 .

[47]  A. Chevy Improvement of growth parameters for Bridgman-grown InSe crystals☆ , 1984 .

[48]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[49]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[50]  Kenji Watanabe,et al.  Supplemental note : Layer-by-Layer Dielectric Breakdown of Hexagonal Boron Nitride , 2015 .

[51]  Richard H. Friend,et al.  Spatial control of the recombination zone in an ambipolar light-emitting organic transistor , 2006 .