Supplementary Note 1: Modeling of Grating Coupler

Nanoscale light sources using metal cavities have been proposed to enable high integration density, efficient operation at low energy per bit and ultra-fast modulation, which would make them attractive for future low-power optical interconnects. For this application, such devices are required to be efficient, waveguide-coupled and integrated on a silicon substrate. We demonstrate a metal-cavity light-emitting diode coupled to a waveguide on silicon. The cavity consists of a metal-coated III–V semiconductor nanopillar which funnels a large fraction of spontaneous emission into the fundamental mode of an InP waveguide bonded to a silicon wafer showing full compatibility with membrane-on-Si photonic integration platforms. The device was characterized through a grating coupler and shows on-chip external quantum efficiency in the 10−4–10−2 range at tens of microamp current injection levels, which greatly exceeds the performance of any waveguide-coupled nanoscale light source integrated on silicon in this current range. Furthermore, direct modulation experiments reveal sub-nanosecond electro-optical response with the potential for multi gigabit per second modulation speeds.

[1]  Y. Fainman,et al.  Amorphous Al2O3 Shield for Thermal Management in Electrically Pumped Metallo-Dielectric Nanolasers , 2014, IEEE Journal of Quantum Electronics.

[2]  P. J. van Veldhoven,et al.  Ohmic Contacts With Ultra-Low Optical Loss on Heavily Doped n-Type InGaAs and InGaAsP for InP-Based Photonic Membranes , 2016, IEEE Photonics Journal.

[3]  D. Miller,et al.  Optical interconnects to electronic chips. , 2010, Applied optics.

[4]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[5]  K. Ding,et al.  Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers , 2013 .

[6]  van der Jjgm Jos Tol,et al.  Moore's law in photonics , 2012 .

[7]  Ming C. Wu,et al.  Enhanced modulation bandwidth of nanocavity light emitting devices. , 2009, Optics express.

[8]  Gunther Roelkens,et al.  High-efficiency ultrasmall polarization converter in InP membrane. , 2012, Optics letters.

[9]  van Pj René Veldhoven,et al.  Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. , 2012, Optics express.

[10]  E. Haller,et al.  Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[11]  H. Riedmatten,et al.  Electrical control of optical emitter relaxation pathways enabled by graphene , 2014, Nature Physics.

[12]  Ioannis Tomkos,et al.  Plasmonic communications : light on a wire , 2013 .

[13]  A. Auffèves,et al.  Pure emitter dephasing: A resource for advanced solid-state single-photon sources , 2008, 0808.0820.

[14]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[15]  J. V. D. van der Tol,et al.  Planar Concave Grating Demultiplexers on an InP-Membrane-on-Silicon Photonic Platform , 2013, IEEE Photonics Technology Letters.

[16]  Masaya Notomi,et al.  Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers , 2013, Nature Photonics.

[17]  A. Fiore,et al.  Enhanced spontaneous emission in a photonic-crystal light-emitting diode , 2008, 0805.2750.

[18]  Masaya Notomi,et al.  Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects. , 2015, Optics express.

[19]  Dongfang Li,et al.  Dynamic control of light emission faster than the lifetime limit using VO2 phase-change , 2015, Nature Communications.

[20]  M. Smit,et al.  Design of a waveguide-coupled nanolaser for photonic integration , 2013 .

[21]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[22]  Jacob B. Khurgin,et al.  Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes , 2014, Nature Photonics.

[23]  M. Smit,et al.  Realization of efficient metal grating couplers for membrane-based integrated photonics. , 2015, Optics letters.

[24]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[25]  Michael Schwind,et al.  High-Speed LED Driver for ns-Pulse Switching of High-Current LEDs , 2014, IEEE Photonics Technology Letters.

[26]  Direct modulation of electroluminescence from silicon nanocrystals beyond radiative recombination rates , 2008 .

[27]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[28]  Ming C. Wu,et al.  Efficient waveguide-coupling of metal-clad nanolaser cavities. , 2011, Optics express.

[29]  Cun-Zheng Ning,et al.  Metallic subwavelength-cavity semiconductor nanolasers , 2012, Light: Science & Applications.

[30]  Marc Ilegems,et al.  Scaling quantum-dot light-emitting diodes to submicrometer sizes , 2002 .

[31]  Volker J. Sorger,et al.  Monolithic III–V on Silicon Plasmonic Nanolaser Structure for Optical Interconnects , 2015, Scientific Reports.

[32]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[33]  Larry A. Coldren,et al.  High verticality InP/InGaAsP etching in Cl2/H2/Ar inductively coupled plasma for photonic integrated circuits , 2011 .

[34]  Amnon Yariv,et al.  Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity , 1999 .

[35]  Gunther Roelkens,et al.  Photonic integration in indium-phosphide membranes on silicon (IMOS) , 2014, Photonics West - Optoelectronic Materials and Devices.

[36]  Yeshaiahu Fainman,et al.  Room-temperature subwavelength metallo-dielectric lasers , 2010 .

[37]  Joseph C. Palais,et al.  Fiber Optic Communications Systems , 2002 .

[38]  Mark L. Brongersma,et al.  Electrically driven subwavelength optical nanocircuits , 2014, Nature Photonics.