Dilute Acid Hydrolysis of Agro-Residues for the Depolymerization of Hemicellulose: State-of-the-Art

Geo-political, long-term economic and sustainable concerns are promoting researchers and entrepreneurs to harness the potential of lignocellulosic feedstock (LCF) into industrially significant products. Agro-residues (sugarcane bagasse, wheat straw, rice straw, corn stover, etc.) constitute the principal fraction of LCF and are available in large amounts globally. The judicious exploration of agro-residues into important products such as d-xylitol, an artificial sweetener, may provide a strong platform for its sustainable supply to the medical and non-medical applications-based sectors. Pretreatment of agro-residues by dilute acid hydrolysis is an inevitable process for the depolymerisation of hemicellulosic fraction into xylose and other sugars. Dilute acid catalyses hemicellulose fractionation at high temperature within short reaction times. Significant developments have been made in the past towards the chemical hydrolysis of agro-residues, particularly for the hemicellulose breakdown. Critical parameters such as acid load, temperature, residence time and solid-to-liquid ratio play pivotal roles in the kinetics of dilute acid hydrolysis of agro-residues. Furthermore, reactor configurations such as counter-current, plug-flow, percolation and shrinking-bed have been designed in order to maximize the sugars recovery with minimum inhibitors generation. This chapter reviews the process parameters, kinetics, methods and reactor engineering for the dilute acid catalysed processes employed for agro-residues.

[1]  Rl Howard,et al.  Lignocellulose biotechnology: issues of bioconversion and enzyme production , 2003 .

[2]  M. Taherzadeh,et al.  FRACTIONATION OF THE MAIN COMPONENTS OF BARLEY SPENT GRAINS FROM A MICROBREWERY , 2011 .

[3]  R. C. Rodrigues,et al.  Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor , 2003 .

[4]  R Maciel Filho,et al.  Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. , 2011, Bioresource technology.

[5]  J. A. Ramírez,et al.  Production of Xylose from Sorghum Straw Using Hydrochloric Acid , 2003 .

[6]  Roger M. Rowell,et al.  Handbook of wood chemistry and wood composites. , 2005 .

[7]  Y. Ong,et al.  Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose , 2012 .

[8]  Solange I. Mussatto,et al.  Acid hydrolysis and fermentation of brewer's spent grain to produce xylitol , 2005 .

[9]  Eulogio Castro,et al.  Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. , 2008, Enzyme and microbial technology.

[10]  A. Chandel,et al.  Bioconversion of De-Oiled Rice Bran (DORB) Hemicellulosic Hydrolysate into Ethanol by Pichia stipitis NCM3499 under Optimized Conditions , 2009 .

[11]  Dehua Liu,et al.  Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2,3-butanediol production. , 2011, Enzyme and microbial technology.

[12]  S. W. Kim,et al.  Dilute acid pretreatment of barley straw and its saccharification and fermentation , 2010 .

[13]  H. Nimz Wood-chemistry, ultrastructure, reactions , 1984, Holz als Roh- und Werkstoff.

[14]  J. Parajó,et al.  Preparation of fermentation media from agricultural wastes and their bioconversion into xylitol , 2000 .

[15]  E. Bon,et al.  Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. , 2010, Bioresource technology.

[16]  F. Kargı,et al.  Effects of operating parameters on acid hydrolysis of ground wheat starch: Maximization of the sugar yield by statistical experiment design , 2011 .

[17]  E. Bon,et al.  Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. , 2010, Bioresource technology.

[18]  J N Nigam,et al.  Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. , 2001, Journal of biotechnology.

[19]  F M Gírio,et al.  Hemicelluloses for fuel ethanol: A review. , 2010, Bioresource technology.

[20]  O. Singh,et al.  Biotechnological Applications of Hemicellulosic Derived Sugars: State-of-the-Art , 2010 .

[21]  C. Fellows,et al.  Value-adding to cellulosic ethanol: lignin polymers. , 2011 .

[22]  L. Canilha,et al.  Xylitol bioproduction from wheat straw: hemicellulose hydrolysis and hydrolyzate fermentation , 2006 .

[23]  C. Wyman,et al.  Features of promising technologies for pretreatment of lignocellulosic biomass. , 2005, Bioresource technology.

[24]  K. Shanmugam,et al.  l(+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans , 2011, Journal of Industrial Microbiology & Biotechnology.

[25]  Jerome F. Saeman,et al.  Kinetics of Wood Saccharification - Hydrolysis of Cellulose and Decomposition of Sugars in Dilute Acid at High Temperature , 1945 .

[26]  Q. Yan,et al.  Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18 , 2010, Journal of Industrial Microbiology & Biotechnology.

[27]  R. C. Rodrigues,et al.  Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30 , 2011, Journal of Industrial Microbiology & Biotechnology.

[28]  Michael E. Himmel,et al.  Dilute acid pretreatment of biomass at high solids concentrations , 1986 .

[29]  M. Bernardes Biofuel Production - Recent Developments and Prospects , 2011 .

[30]  I. Dogaris,et al.  Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol , 2009 .

[31]  Manuel Vázquez,et al.  Mathematical modelling of hemicellulosic sugar production from sorghum straw , 2002 .

[32]  M. Galbe,et al.  Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production , 2010, Biotechnology for biofuels.

[33]  Ozlem Akpinar,et al.  Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. , 2009, Carbohydrate research.

[34]  F. Carvalheiro,et al.  Optimization of Brewery's spent grain dilute-acid hydrolysis for the production of pentose-rich culture media , 2004, Applied biochemistry and biotechnology.

[35]  Ke-Ke Cheng,et al.  Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis , 2009 .

[36]  E. Chan,et al.  Economics and environmental impact of bioethanol production technologies: an appraisal , 2007 .

[37]  F. Carvalheiro,et al.  Yeast Biomass Production in Brewery’s Spent Grains Hemicellulosic Hydrolyzate , 2008, Applied biochemistry and biotechnology.

[38]  R. Braun,et al.  Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. , 2002, Applied biochemistry and biotechnology.

[39]  R. Rowell,et al.  Cell Wall Chemistry , 2012 .

[40]  T. S. Milessi,et al.  Effect of Dissolved Oxygen and Inoculum Concentration on Xylose Reductase Production from Candida guilliermondii Using Sugarcane Bagasse Hemicellulosic Hydrolysate , 2011 .

[41]  Yun-Joong Kwon,et al.  Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol , 2007 .

[42]  A. Chandel,et al.  Statistical Optimization of Sugarcane Leaves Hydrolysis into Simple Sugars by Dilute Sulfuric Acid Catalyzed Process , 2012, Sugar Tech.

[43]  B. Saha,et al.  Hemicellulose bioconversion , 2003, Journal of Industrial Microbiology and Biotechnology.

[44]  F. P. Eddy,et al.  Two-stage dilute-acid pretreatment of softwoods , 2000, Applied biochemistry and biotechnology.

[45]  W. L. Faith Development of the Scholler Process in the United States , 1945 .

[46]  Abdul Latif Ahmad,et al.  Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid , 2006 .

[47]  A. A. Shatalov,et al.  Xylose production from giant reed (Arundo donax L.): Modeling and optimization of dilute acid hydrolysis. , 2012, Carbohydrate polymers.

[48]  J. N. Nigam Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein , 2000 .

[49]  A. R. Gonçalves,et al.  Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing , 2011, Journal of Industrial Microbiology & Biotechnology.

[50]  Luís C. Duarte,et al.  Hemicellulose biorefineries: a review on biomass pretreatments , 2008 .

[51]  Yoon-Yong Lee,et al.  Dilute-Acid Hydrolysis of Lignocellulosic Biomass , 1999 .

[52]  J. C. Santos,et al.  Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. , 2009 .

[53]  Anupama,et al.  Value-added food: single cell protein. , 2000, Biotechnology advances.

[54]  O. Singh,et al.  Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio‐products , 2012 .

[55]  Y. Y. Lee,et al.  A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. , 2003, Applied biochemistry and biotechnology.

[56]  G. Rocha,et al.  Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production , 2011 .

[57]  M. Felipe,et al.  Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation , 2008, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[58]  C. Wyman,et al.  Pretreatment: the key to unlocking low‐cost cellulosic ethanol , 2008 .

[59]  Wan-Qian Guo,et al.  Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16 , 2009 .

[60]  J. A. Ramírez,et al.  Production of detoxified sorghum straw hydrolysates for fermentative purposes , 2006 .

[61]  A. R. Gonçalves,et al.  Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. , 2012 .

[62]  O. Singh,et al.  Key drivers influencing the commercialization of ethanol-based biorefineries , 2010 .

[63]  Maura das Graças Lisboa de Felipe,et al.  Avaliação da casca de aveia para produção biotecnológica de xilitol - DOI: 10.4025/actascitechnol.v26i2.1509 , 2004 .

[64]  Solange I. Mussatto,et al.  Lignocellulose as raw material in fermentation processes , 2010 .

[65]  R. C. Rodrigues,et al.  Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). , 2010, Bioresource technology.

[66]  L. Laopaiboon,et al.  Acid hydrolysis of sugarcane bagasse for lactic acid production. , 2010, Bioresource technology.

[67]  T. Watanabe,et al.  Citric acid production from xylan and xylan hydrolysate by semi-solid culture of Aspergillus niger. , 1999, Bioscience, biotechnology, and biochemistry.

[68]  M. Mathlouthi,et al.  Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. , 2009, Bioresource technology.

[69]  L. Canilha,et al.  Semi-continuous xylitol bioproduction in sugarcane bagasse hydrolysate: effect of nutritional supplementation , 2007 .

[70]  Solange I. Mussatto,et al.  Lignin recovery from brewer’s spent grain black liquor , 2007 .

[71]  G. Xie,et al.  Citric acid production by Aspergillus niger ATCC 9142 from a treated ethanol fermentation co‐product using solid‐state fermentation , 2009, Letters in applied microbiology.

[72]  M. Galbe,et al.  Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja Brava. , 2004, Bioresource technology.

[73]  Wijitha Senadeera,et al.  Fluidization Characteristics of Moist Food Particles , 2006 .

[74]  L. Rigal,et al.  TURNING AGRICULTURAL STRAW RESIDUES INTO VALUE – ADDED COMPOSITE PRODUCTS : A NEW ENVIRONMENTALLY FRIENDLY TECHNOLOGY , 2005 .

[75]  E. Sjöström Chapter 3 – WOOD POLYSACCHARIDES , 1993 .

[76]  Solange I. Mussatto,et al.  A study on chemical constituents and sugars extraction from spent coffee grounds , 2011 .

[77]  Ajay Singh,et al.  Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. , 2007, Bioresource technology.

[78]  M. B. Silva,et al.  The realm of cellulases in biorefinery development , 2012, Critical reviews in biotechnology.

[79]  J. C. Santos,et al.  Cell immobilization and xylitol production using sugarcane bagasse as raw material , 2007, Applied biochemistry and biotechnology.

[80]  Hary Sulistyo,et al.  Kinetics of sequential reaction of hydrolysis and sugar degradation of rice husk in ethanol production: effect of catalyst concentration. , 2011, Bioresource technology.

[81]  M. Taherzadeh,et al.  Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review , 2008, International journal of molecular sciences.

[82]  Chirangano Mangwandi,et al.  Kinetic Modelling of Dilute Acid Hydrolysis of Lignocellulosic Biomass , 2011 .

[83]  Silvio S. Silva,et al.  A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid , 2011, Journal of Industrial Microbiology & Biotechnology.

[84]  M. Taherzadeh,et al.  Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review , 2007, BioResources.

[85]  M. Felipe,et al.  Environmental parameters affecting xylitol production from sugar cane bagasse hemicellulosic hydrolyzate by Candida guilliermondii , 1997, Journal of Industrial Microbiology and Biotechnology.

[86]  J. Saddler,et al.  Influence of xylan on the enzymatic hydrolysis of steam‐pretreated corn stover and hybrid poplar , 2009, Biotechnology progress.