Multiplier-less real-valued FFT-like transformation (ML-RFFT) and related real-valued transformations
暂无分享,去创建一个
[1] Alan V. Oppenheim,et al. Discrete-Time Signal Pro-cessing , 1989 .
[2] M. J. Narasimha,et al. On the Computation of the Discrete Cosine Transform , 1978, IEEE Trans. Commun..
[3] K. L. Ho,et al. Fast algorithms for computing the discrete W transforms , 1990, IEEE TENCON'90: 1990 IEEE Region 10 Conference on Computer and Communication Systems. Conference Proceedings.
[4] Henrique S. Malvar,et al. Signal processing with lapped transforms , 1992 .
[5] K. L. Ho,et al. Multiplierless perfect reconstruction modulated filter banks with sum-of-powers-of-two coefficients , 2001, IEEE Signal Process. Lett..
[6] K. Ho,et al. Fast algorithms for computing the discrete cosine transform , 1992 .
[7] Shing-Chow Chan,et al. Multiplier-less discrete sinusoidal and lapped transforms using sum-of-powers-of-two (sopot) coefficients , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).
[8] Shing-Chow Chan,et al. Split vector-radix fast Fourier transform , 1992, IEEE Trans. Signal Process..
[9] Zhongde Wang. Fast algorithms for the discrete W transform and for the discrete Fourier transform , 1984 .
[10] Douglas L. Jones,et al. Real-valued fast Fourier transform algorithms , 1987, IEEE Trans. Acoust. Speech Signal Process..
[11] Shing-Chow Chan,et al. A multiplier-less 1-D and 2-D fast Fourier transform-like transformation using sum-of-powers-of-two (SOPOT) coefficients , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).
[12] Shing-Chow Chan,et al. Multiplierless perfect reconstruction modulated filter banks with sum-of-powers-of-two coefficients , 2001, IEEE Signal Processing Letters.