Electrostriction of polarizable materials: Comparison of models with experimental data

A microscopic model is employed to relate the dielectric tensor to the microstructure of isotropic amorphous or cubic crystalline materials. Electrostriction is characterized by dielectric parameters that describe how the dielectric tensor varies with deformation and the resulting change in the microstructure. These dielectric parameters are obtained for small deformations, and expressed in terms of measurable, macroscopic properties. Unlike previous approaches, we avoid employing the Lorentz cavity approximation to determine the local polarization. Dipole sums are renormalized by treating the dielectric constant of the undeformed material as a known quantity. Predictions agree with our experimental data for different block copolymer films. Further progress in understanding electrostriction and developing improved models requires measuring the deformation dependence of the dielectric tensor for various materials under various conditions (field strength and frequency, deformation frequency, temperature, etc.).

[1]  H. A. Lorentz Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte , 1880 .

[2]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[3]  Relation of the electrostrictive coefficients of a non-ionic isotropic dielectric to other material constants , 1995 .

[4]  C. Kittel Introduction to solid state physics , 1954 .

[5]  Daniel J. Klingenberg,et al.  Material Parameters for Electrostriction. , 1996 .

[6]  W. P. Mason Physical Acoustics and the Properties of Solids , 1956 .

[7]  C. Purvis,et al.  Dipole-field sums and Lorentz factors for orthorhombic lattices, and implications for polarizable molecules , 1982 .

[8]  E. Fukada,et al.  Inverse piezoelectric effect and electrostrictive effect in polarized poly(vinylidene fluoride) films , 1975 .

[9]  L. E. Cross,et al.  Laser interferometer for the study of piezoelectric and electrostrictive strains , 1988 .

[10]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[11]  A. Gast,et al.  A microscopic model of electrorheology , 1988 .

[12]  Robert Bruce Lindsay,et al.  Physical Properties of Crystals , 1957 .

[13]  G. Batchelor Sedimentation in a dilute dispersion of spheres , 1972, Journal of Fluid Mechanics.

[14]  A. Gast,et al.  Nonequilibrium statistical mechanics of concentrated colloidal dispersions: Hard spheres in weak flows , 1986 .

[15]  V. Anderson,et al.  Mechanical stress in a dielectric solid from a uniform electric field. , 1986, Physical review. B, Condensed matter.

[16]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[17]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  E. B. Wilson,et al.  The Theory of Electrons , 1911 .

[19]  Electrostriction of the copolymer of vinylidene‐fluoride and trifluoroethylene , 1995 .

[20]  Jerry I. Scheinbeim,et al.  High field electrostrictive response of polymers , 1994 .