Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers

Abstract We have theoretically investigated the birefringence and loss properties of the selectively liquid-filled photonic crystal fibers with the liquid asymmetrically infiltrated into one-line air holes along x -axis. A high birefringence value B  = 1.74 × 10 −3 can be achieved at λ = 1.55 μm. By varying the index of the infiltrating liquid, the birefringence values are shown to be well tuned. In addition, the confinement losses can be efficiently reduced by diminishing the number of liquid holes, which is quite useful for optical devices.

[1]  Chin-Ping Yu,et al.  Applications of the finite difference mode solution method to photonic crystal structures , 2004 .

[2]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[3]  B. Eggleton,et al.  Fluid-Filled Solid-Core Photonic Bandgap Fibers , 2009, Journal of Lightwave Technology.

[4]  R Arrathoon,et al.  Architectural and performance considerations for a 10(7)-instruction/sec optoelectronic central processing unit. , 1987, Optics letters.

[5]  Wei-Ping Huang,et al.  Design of photonic crystal fibers for dispersion-related applications , 2003 .

[6]  Birefringence in elliptical-cladding single-polarisation fibres , 1982 .

[7]  T A Birks,et al.  Structural rocking filters in highly birefringent photonic crystal fiber. , 2003, Optics letters.

[8]  P S Westbrook,et al.  Highly tunable birefringent microstructured optical fiber. , 2002, Optics letters.

[9]  Simon Fleming,et al.  Birefringent all-solid hybrid microstructured fiber. , 2008, Optics express.

[10]  Yanyi Huang,et al.  Fabrication of functional microstructured optical fibers through a selective-filling technique , 2004 .

[11]  B. Eggleton,et al.  Microstructured optical fiber devices. , 2001, Optics express.

[12]  B. Rahman,et al.  Thermal-stress-induced birefringence in bow-tie optical fibers. , 1994, Applied optics.

[13]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[14]  J. Broeng,et al.  Highly birefringent index-guiding photonic crystal fibers , 2001, IEEE Photonics Technology Letters.

[15]  B. J. Eggleton,et al.  Optofluidics: a novel generation of reconfigurable and adaptive compact architectures , 2008 .

[16]  Jonathan Knight,et al.  Large mode area photonic crystal fibre , 1998 .

[17]  Edward Nowinowski-Kruszelnicki,et al.  Tunable highly birefringent solid-core photonic liquid crystal fibers , 2007 .

[18]  S. Leon-Saval,et al.  All-fiber anamorphic core-shape transitions. , 2006, Optics letters.

[19]  H R Simonsen,et al.  Improved large-mode-area endlessly single-mode photonic crystal fibers. , 2003, Optics letters.

[20]  R. Dyott,et al.  Preservation of polarisation in optical-fibre waveguides with elliptical cores , 1979 .

[21]  K. Tajima,et al.  Transmission loss of a 125- mu m diameter PANDA fiber with circular stress-applying parts , 1989 .

[22]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.

[23]  Demetri Psaltis,et al.  Photorefractive recording in LiNbO(3):Mn. , 2002, Optics letters.

[24]  Chin-Ping Yu,et al.  Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. , 2004, Optics express.

[25]  E. Kriezis,et al.  Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance. , 2006, Optics express.

[26]  Limin Xiao,et al.  Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. , 2005, Optics express.

[27]  Hwa-Yaw Tam,et al.  Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer , 2007 .

[28]  T A Birks,et al.  Highly birefringent photonic crystal fibers. , 2000, Optics letters.

[29]  Robert S. Windeler,et al.  Microstructured optical fibre with tunable birefringence , 2002 .