Clonal Selection Algorithm with Aging Operators for Protein Structure Prediction on AB Off-Lattice Model

Immune algorithms (IAs) are microscopic view of evolutionary algorithms (EAs) and applied in combinatorial optimization problems. This paper addresses to a clonal selection algorithm (CSA) that is one of the most representative IA and was applied into the protein structure prediction (PSP) on AB off-lattice model, in which the memory B cells of the CSA was innovated by employing different strategies: local search and global search in the phase of the mutation. And the CSA was further improved by adding aging operator to combat the premature convergence. However the pure aging operator didn’t achieve effective results and sometimes the optimum solution was eliminated. To resolve this problem, the current best solution was reserved by an antibody and it was not eliminated when its age reached its life span. In our experiments the improved algorithm was compared with the standard CSA and the pure aging CSA, which of the results demonstrated that the improved strategy with the memory B cells and long life aging was very effective to overcome premature convergence and to avoid trapped in the local-best solution, and it was also effective in keeping the diversity of the small size population.