Extended Generalized Hyperbolic-function Method and New Exact Solutions of the Generalized Hamiltonian and NNV Equations by the Symbolic Computation
暂无分享,去创建一个
[1] G. T. Birk. The onset of Rayleigh–Taylor instabilities in magnetized partially ionized dense dusty plasmas , 2002 .
[2] G. Lamb. Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium , 1971 .
[3] R. Radha,et al. Singularity analysis and localized coherent structures in (2+1)‐dimensional generalized Korteweg–de Vries equations , 1994 .
[4] Abdul-Majid Wazwaz,et al. The tanh method and the sine–cosine method for solving the KP-MEW equation , 2005, Int. J. Comput. Math..
[5] M. Tabor,et al. The Painlevé property for partial differential equations , 1983 .
[6] M. Boiti,et al. A simple approach to the Hamiltonian structure of soliton equations , 1983, Il Nuovo Cimento B.
[7] Hong-qing Zhang,et al. A generalized F-expansion method to find abundant families of Jacobi Elliptic Function solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equation , 2006 .
[8] Bo Tian,et al. Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics , 2001 .
[9] S. Lou. On the coherent structures of the Nizhnik–Novikov–Veselov equation , 2000 .
[10] M. Wadati,et al. The theory and applications of the unstable nonlinear Schrödinger equation , 1991 .
[11] C. S. Gardner,et al. Method for solving the Korteweg-deVries equation , 1967 .
[12] Wojciech Penczek,et al. Bounded Model Checking for the Universal Fragment of CTL , 2002, Fundam. Informaticae.
[13] Ahmet Bekir,et al. Exact solutions of coupled nonlinear evolution equations , 2008 .
[14] B. Tian,et al. Extending the generalized tanh method to the generalized Hamiltonian equations: New soliton-like solutions☆ , 1997 .
[15] Jean Mairesse,et al. Synthesis and Analysis of Product-form Petri Nets , 2013, Fundam. Informaticae.
[16] T. Xia,et al. New explicit and exact solutions for the Nizhnik-Novikov-Vesselov equation. , 2001 .
[17] Hongqing Zhang,et al. New multiple soliton-like solutions to the generalized (2 + 1)-dimensional KP equation , 2004, Appl. Math. Comput..
[18] Hongqing Zhang,et al. Symbolic computation and families of Jacobi elliptic function solutions of the (2 + 1)-dimensional Nizhnik-Novikov-Veselov equation , 2005, Appl. Math. Comput..
[19] Hong-qing Zhang,et al. New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the (2 + 1)-dimensional NNV equation , 2006 .
[20] M. Boiti,et al. On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions , 1986 .
[21] Bo Tian,et al. Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation , 2005 .
[22] Deng-Shan Wang,et al. AUTO-BÄCKLUND TRANSFORMATION AND NEW EXACT SOLUTIONS OF THE (2 + 1)-DIMENSIONAL NIZHNIK–NOVIKOV–VESELOV EQUATION , 2005 .
[23] E. Fan,et al. A note on the homogeneous balance method , 1998 .
[24] M. Wadati,et al. Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .
[25] Wang Kelin,et al. Exact solutions for two nonlinear equations. I , 1990 .
[26] Xing-Biao Hu. Nonlinear superposition formula of the Novikov-Veselov equation , 1994 .
[27] A. Veselov,et al. Two-dimensional Schro¨dinger operator: inverse scattering transform and evolutional equations , 1986 .
[28] Y. Tagami. Soliton-like solutions to a (2+1)-dimensional generalization of the KdV equation , 1989 .
[29] R. Hirota. Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .
[30] Lawrence C. Paulson,et al. A Pragmatic Approach to Extending Provers by Computer Algebra - with Applications to Coding Theory , 1999, Fundam. Informaticae.
[31] T. Gui-zhang. A new hierarchy of coupled degenerate hamiltonian equations , 1983 .
[32] Yan-Ze Peng,et al. A class of doubly periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation [rapid communication] , 2005 .
[33] E. J. Parkes,et al. Travelling solitary wave solutions to a compound KdV-Burgers equation , 1997 .