Extended Generalized Hyperbolic-function Method and New Exact Solutions of the Generalized Hamiltonian and NNV Equations by the Symbolic Computation

In this paper, with the aid of the computerized symbolic computation, we present an extended generalized hyperbolic-function method. Being concise and straightforward, it can be applicable to seek more types of solutions for certain nonlinear evolution equations (NLEES). In illustration, we choose the generalized Hamiltonian equations and the (2 + 1)-dimensional Nizhnik-Novikov-Veselov (NNV) equations to demonstrate the validity and advantages of the method. As a result, abundant new exact solutions are obtained including soliton-like solutions, traveling wave solutions etc. The method can be also applied to other nonlinear partial differential equations (NPDEs).

[1]  G. T. Birk The onset of Rayleigh–Taylor instabilities in magnetized partially ionized dense dusty plasmas , 2002 .

[2]  G. Lamb Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium , 1971 .

[3]  R. Radha,et al.  Singularity analysis and localized coherent structures in (2+1)‐dimensional generalized Korteweg–de Vries equations , 1994 .

[4]  Abdul-Majid Wazwaz,et al.  The tanh method and the sine–cosine method for solving the KP-MEW equation , 2005, Int. J. Comput. Math..

[5]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[6]  M. Boiti,et al.  A simple approach to the Hamiltonian structure of soliton equations , 1983, Il Nuovo Cimento B.

[7]  Hong-qing Zhang,et al.  A generalized F-expansion method to find abundant families of Jacobi Elliptic Function solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equation , 2006 .

[8]  Bo Tian,et al.  Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics , 2001 .

[9]  S. Lou On the coherent structures of the Nizhnik–Novikov–Veselov equation , 2000 .

[10]  M. Wadati,et al.  The theory and applications of the unstable nonlinear Schrödinger equation , 1991 .

[11]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[12]  Wojciech Penczek,et al.  Bounded Model Checking for the Universal Fragment of CTL , 2002, Fundam. Informaticae.

[13]  Ahmet Bekir,et al.  Exact solutions of coupled nonlinear evolution equations , 2008 .

[14]  B. Tian,et al.  Extending the generalized tanh method to the generalized Hamiltonian equations: New soliton-like solutions☆ , 1997 .

[15]  Jean Mairesse,et al.  Synthesis and Analysis of Product-form Petri Nets , 2013, Fundam. Informaticae.

[16]  T. Xia,et al.  New explicit and exact solutions for the Nizhnik-Novikov-Vesselov equation. , 2001 .

[17]  Hongqing Zhang,et al.  New multiple soliton-like solutions to the generalized (2 + 1)-dimensional KP equation , 2004, Appl. Math. Comput..

[18]  Hongqing Zhang,et al.  Symbolic computation and families of Jacobi elliptic function solutions of the (2 + 1)-dimensional Nizhnik-Novikov-Veselov equation , 2005, Appl. Math. Comput..

[19]  Hong-qing Zhang,et al.  New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the (2 + 1)-dimensional NNV equation , 2006 .

[20]  M. Boiti,et al.  On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions , 1986 .

[21]  Bo Tian,et al.  Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation , 2005 .

[22]  Deng-Shan Wang,et al.  AUTO-BÄCKLUND TRANSFORMATION AND NEW EXACT SOLUTIONS OF THE (2 + 1)-DIMENSIONAL NIZHNIK–NOVIKOV–VESELOV EQUATION , 2005 .

[23]  E. Fan,et al.  A note on the homogeneous balance method , 1998 .

[24]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[25]  Wang Kelin,et al.  Exact solutions for two nonlinear equations. I , 1990 .

[26]  Xing-Biao Hu Nonlinear superposition formula of the Novikov-Veselov equation , 1994 .

[27]  A. Veselov,et al.  Two-dimensional Schro¨dinger operator: inverse scattering transform and evolutional equations , 1986 .

[28]  Y. Tagami Soliton-like solutions to a (2+1)-dimensional generalization of the KdV equation , 1989 .

[29]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[30]  Lawrence C. Paulson,et al.  A Pragmatic Approach to Extending Provers by Computer Algebra - with Applications to Coding Theory , 1999, Fundam. Informaticae.

[31]  T. Gui-zhang A new hierarchy of coupled degenerate hamiltonian equations , 1983 .

[32]  Yan-Ze Peng,et al.  A class of doubly periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation [rapid communication] , 2005 .

[33]  E. J. Parkes,et al.  Travelling solitary wave solutions to a compound KdV-Burgers equation , 1997 .