An iterative Monte Carlo method for nonconjugate Bayesian analysis

The Gibbs sampler has been proposed as a general method for Bayesian calculation in Gelfand and Smith (1990). However, the predominance of experience to date resides in applications assuming conjugacy where implementation is reasonably straightforward. This paper describes a tailored approximate rejection method approach for implementation of the Gibbs sampler when nonconjugate structure is present. Several challenging applications are presented for illustration.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  Creasy Problem,et al.  Reference Posterior Distributions for Bayesian Inference , 1979 .

[3]  R. E. Kass Computing observed information by finite differences , 1987 .

[4]  Adrian F. M. Smith,et al.  Efficient generation of random variates via the ratio-of-uniforms method , 1991 .

[5]  James O. Berger,et al.  Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .

[6]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[7]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[8]  C. I. Bliss THE CALCULATION OF THE DOSAGE-MORTALITY CURVE , 1935 .

[9]  J. E. H. Shaw,et al.  The implementation of the bayesian paradigm , 1985 .

[10]  D. Gaver,et al.  Robust empirical bayes analyses of event rates , 1987 .

[11]  J. C. Naylor,et al.  Econometric illustrations of novel numerical integration strategies for Bayesian inference , 1988 .

[12]  P. Diaconis,et al.  Conjugate Priors for Exponential Families , 1979 .

[13]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[14]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[15]  Adrian F. M. Smith,et al.  Gibbs Sampling for Marginal Posterior Expectations , 1991 .

[16]  Martin Abba Tanner,et al.  Tools for Statistical Inference: Observed Data and Data Augmentation Methods , 1993 .

[17]  J. Witmer,et al.  Nonlinear Regression Modeling. , 1984 .

[18]  A. F. M. Smith,et al.  Progress with numerical and graphical methods for practical Bayesian statistics , 1987 .

[19]  C. Morris Natural Exponential Families with Quadratic Variance Functions: Statistical Theory , 1983 .

[20]  Adrian F. M. Smith,et al.  Hierarchical Bayesian Analysis of Changepoint Problems , 1992 .

[21]  R. Prentice,et al.  A generalization of the probit and logit methods for dose response curves. , 1976, Biometrics.

[22]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[23]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[24]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[25]  C. Morris Natural Exponential Families with Quadratic Variance Functions , 1982 .

[26]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[27]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[28]  Adrian F. M. Smith,et al.  Bayesian Inference for Generalized Linear and Proportional Hazards Models Via Gibbs Sampling , 1993 .