Modulation‐Doped In2O3/ZnO Heterojunction Transistors Processed from Solution

This paper reports the controlled growth of atomically sharp In2O3/ZnO and In2O3/Li‐doped ZnO (In2O3/Li‐ZnO) heterojunctions via spin‐coating at 200 °C and assesses their application in n‐channel thin‐film transistors (TFTs). It is shown that addition of Li in ZnO leads to n‐type doping and allows for the accurate tuning of its Fermi energy. In the case of In2O3/ZnO heterojunctions, presence of the n‐doped ZnO layer results in an increased amount of electrons being transferred from its conduction band minimum to that of In2O3 over the interface, in a process similar to modulation doping. Electrical characterization reveals the profound impact of the presence of the n‐doped ZnO layer on the charge transport properties of the isotype In2O3/Li‐ZnO heterojunctions as well as on the operating characteristics of the resulting TFTs. By judicious optimization of the In2O3/Li‐ZnO interface microstructure, and Li concentration, significant enhancement in both the electron mobility and TFT bias stability is demonstrated.

[1]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[2]  Stuart R. Thomas,et al.  Al‐Doped ZnO Transistors Processed from Solution at 120 °C , 2016 .

[3]  Xinge Yu,et al.  Metal oxides for optoelectronic applications. , 2016, Nature materials.

[4]  T. Anthopoulos,et al.  Exploring Two-Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next-Generation, High-Performance, Thin-Film Transistor Technologies. , 2015, Small.

[5]  M. Ahamed,et al.  Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells , 2015, Scientific Reports.

[6]  E. Kymakis,et al.  High Electron Mobility Thin‐Film Transistors Based on Solution‐Processed Semiconducting Metal Oxide Heterojunctions and Quasi‐Superlattices , 2015, Advanced science.

[7]  Jang‐Joo Kim,et al.  Effect of Doping Concentration on Microstructure of Conjugated Polymers and Characteristics in N‐Type Polymer Field‐Effect Transistors , 2015 .

[8]  S. Pandey,et al.  Effect of Li doping on the structural, optical and formaldehyde sensing properties of In2O3 thin films , 2015 .

[9]  M. Caironi,et al.  Control of Ambipolar and Unipolar Transport in Organic Transistors by Selective Inkjet‐Printed Chemical Doping for High Performance Complementary Circuits , 2014 .

[10]  Z. Bao,et al.  Effective Solution‐ and Vacuum‐Processed n‐Doping by Dimers of Benzimidazoline Radicals , 2014, Advanced materials.

[11]  Yong-Young Noh,et al.  Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films , 2012, Nature.

[12]  J. Meiss,et al.  In-situ conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60 , 2012 .

[13]  Tae Il Lee,et al.  Low‐Temperature, Solution‐Processed and Alkali Metal Doped ZnO for High‐Performance Thin‐Film Transistors , 2012, Advanced materials.

[14]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[15]  Ping Li,et al.  Aluminum and nitrogen impurities in Wurtzite ZnO: first-principles studies , 2011 .

[16]  M. Kanatzidis,et al.  Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. , 2011, Nature materials.

[17]  H. Sirringhaus,et al.  Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. , 2011, Nature materials.

[18]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[19]  Edmund G Seebauer,et al.  Charged Semiconductor Defects: Structure, Thermodynamics and Diffusion , 2008 .

[20]  Markus Niederberger,et al.  Nonaqueous sol-gel routes to metal oxide nanoparticles. , 2007, Accounts of chemical research.

[21]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[22]  Jun Yuan,et al.  Control of p- and n-type conductivities in Li-doped ZnO thin films , 2006 .

[23]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[24]  Pedro Barquinha,et al.  Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature , 2004 .

[25]  Zhifu Liu,et al.  Blueshift of near band edge emission in Mg doped ZnO thin films and aging , 2004 .

[26]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[27]  E. F. Krimmel,et al.  Silicon : evolution and future of a technology , 2004 .

[28]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[29]  K. Ellmer Resistivity of polycrystalline zinc oxide films: current status and physical limit , 2001 .

[30]  T. Trindade,et al.  Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution , 1994 .

[31]  W. Spear,et al.  Substitutional doping of amorphous silicon , 1993 .

[32]  T. Drummond,et al.  Modulation-doped GaAs/(Al,Ga)As heterojunction field-effect transistors: MODFETs , 1986, Proceedings of the IEEE.

[33]  D. Delagebeaudeuf,et al.  Metal-(n) AlGaAs-GaAs two-dimensional electron gas FET , 1982, IEEE Transactions on Electron Devices.

[34]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[35]  A. Gossard,et al.  Dependence of electron mobility in modulation‐doped GaAs‐(AlGa)As heterojunction interfaces on electron density and Al concentration , 1981 .

[36]  H. Queisser,et al.  Electron scattering by ionized impurities in semiconductors , 1981 .

[37]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[38]  R. E. Thomas,et al.  Carrier mobilities in silicon empirically related to doping and field , 1967 .