Remote Sensing of Water Resources in Semi-Arid Mediterranean Areas: the joint international laboratory TREMA

Monitoring of water resources and a better understanding of the eco-hydrological processes governing their dynamics are necessary to anticipate and develop measures to adapt to climate and water-use changes. Focusing on this aim, a research project carried out within the framework of French–Moroccan cooperation demonstrated how remote sensing can help improve the monitoring and modelling of water resources in semi-arid Mediterranean regions. The study area is the Tensift Basin located near Marrakech (Morocco) – a typical Southern Mediterranean catchment with water production in the mountains and downstream consumption mainly driven by agriculture. Following a description of the institutional context and the experimental network, the main recent research results are presented: (1) methodological development for the retrieval of key components of the water cycle in a snow-covered area from remote-sensing imagery (disaggregated soil moisture from soil moisture and ocean salinity) at the kilometre scale, based on the Moderate Resolution Imaging Spectroradiometer (MODIS); (2) the use of remote-sensing products together with land-surface modelling for the monitoring of evapotranspiration; and (3) phenomenological modelling based only on time series of remote-sensing data with application to forecasting of cereal yields. Finally, the issue of transfer of research results is also addressed through two remote sensing-based tools developed together with the project partners involved in water management and irrigation planning.

M. Zribi | S. Mangiarotti | G. Boulet | Y. Kerr | V. Simonneaux | A. Abourida | A. Boudhar | B. Berjamy | L. Drapeau | J. Ezzahar | R. Escadafal | L. Hanich | L. Jarlan | S. Khabba | M. Le Page | O. Merlin | B. Mougenot | A. Tavernier | S. Er-Raki | G. Bigeard | O. Hagolle | C. Szczypta | S. Belaqziz | H. Marah | A. Mokssit | Y. Kerr | O. Hagolle | O. Merlin | F. Habets | L. Jarlan | B. Coudert | F. Driouech | M. Leblanc | V. Simonneaux | S. Khabba | G. Boulet | M. Zribi | J. Ezzahar | A. Diarra | S. Er-raki | G. Aouade | A. Tavernier | R. Escadafal | S. Gascoin | C. Szczypta | P. Fanise | S. Mangiarotti | V. Le Dantec | Y. Tramblay | M. H. Kharrou | B. Mougenot | Y. Fakir | J. Chirouze | G. Bigeard | V. Le Dantec | N. Laftouhi | A. Benkaddour | L. Hanich | L. Drapeau | M. Le Page | A. Boudhar | A. Chakir | J. Chirouze | F. Habets | S. Gascoin | B. Berjamy | A. Saaïdi | J. Abaoui | M. El Adnani | A. El Fazziki | N. Amenzou | F. Raibi | A. El Mandour | H. Ibouh | M. El Faïz | N. Filali | S. Belaqziz | A. Marchane | J. Toumi | Y. Hajhouji | H. Nassah | K. Boukhari | A. Abourida | B. Richard | M. Kasbani | H. Marah | A. Naimi | P. Fanise | J. Toumi | Y. Fakir | A. Diarra | N. Filali | M.H. Kharrou | A. Saaïdi | A. Benkaddour | N. Laftouhi | J. Abaoui | F. Driouech | M. El Adnani | A. El Fazziki | N. Amenzou | F. Raibi | A. El Mandour | H. Ibouh | Y. Tramblay | M. Leblanc | M. El Faïz | B. Coudert | A. Marchane | G. Aouade | Y. Hajhouji | H. Nassah | K. Boukhari | B. Richard | M. Kasbani | A. Chakir | A. Naimi | A. Mokssit | M. L. Le Page | Younes Fakir | A. El Fazziki | M. Le Page

[1]  Paul V. Bolstad,et al.  Sap flux–upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States , 2006 .

[2]  J. Mahfouf,et al.  The ISBA land surface parameterisation scheme , 1996 .

[3]  Paul C. Stoy,et al.  Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements , 2008 .

[4]  Matthew F. McCabe,et al.  Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies , 2008 .

[5]  Olivier Hagolle,et al.  Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range , 2015 .

[6]  Nader Katerji,et al.  Measurement and modelling of evapotranspiration of irrigated citrus orchard under Mediterranean conditions , 2005 .

[7]  Salah Er-Raki,et al.  Irrigation scheduling of a classical gravity network based on the Covariance Matrix Adaptation - Evolutionary Strategy algorithm , 2014 .

[8]  F. Giorgi,et al.  Climate change hot‐spots , 2006 .

[9]  Frank Canters,et al.  Mapping impervious surface change from remote sensing for hydrological modeling , 2013 .

[10]  Massimo Menenti,et al.  S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance , 2000 .

[11]  V. Simonneaux,et al.  Estimation des volumes d’eau pompés dans la nappe pour l’irrigation (plaine du Haouz, Marrakech, Maroc). Comparaison d’une méthode statistique et d’une méthode basée sur l’utilisation de la télédétection , 2009 .

[12]  Albert Olioso,et al.  An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S) , 2014 .

[13]  Lionel Jarlan,et al.  Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management , 2016 .

[14]  N. Akesbi Une nouvelle stratégie pour lagriculture marocaine: Le " Plan Maroc Vert " , 2012 .

[15]  L. Jarlan,et al.  Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco , 2013, Water Resources Management.

[16]  Benoît Duchemin,et al.  Calibration and Validation of the STICS Crop Model for Managing Wheat Irrigation in the Semi-Arid Marrakech/Al Haouz Plain , 2007 .

[17]  Philippe Dugot M. El Faïz, Les maîtres de l'eau. Histoire de l'hydraulique arabe , 2007 .

[18]  Florence Habets,et al.  Analysis of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France , 2008 .

[19]  D. Raes,et al.  AquaCrop — The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description , 2009 .

[20]  B. Conant,et al.  Delineating and Quantifying Ground Water Discharge Zones Using Streambed Temperatures , 2004, Ground water.

[21]  Benoît Duchemin,et al.  Long-term analysis of snow-covered area in the Moroccan High-Atlas through remote sensing , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[22]  L. Jarlan,et al.  Estimation of soil evaporation and infiltration losses using stables isotopes, Fluxmeter and Eddy-Covariance system for citrus orchards in a semi-arid region (Morocco). , 2013 .

[23]  M. Déqué,et al.  Weather regimes—Moroccan precipitation link in a regional climate change simulation , 2010 .

[24]  C. Perrin,et al.  Improvement of a parsimonious model for streamflow simulation , 2003 .

[25]  Richard J. Hobbs,et al.  Mediterranean-Type Ecosystems: Opportunities and Constraints for Studying the Function of Biodiversity , 1995 .

[26]  J. Constantz,et al.  Heat as a Tracer to Estimate Dissolved Organic Carbon Flux from a Restored Wetland , 2005, Ground water.

[27]  Alexandra Miller,et al.  Exploring the land: a comparison of land-use patterns in the Middle and Upper Paleolithic of the western Mediterranean , 2008 .

[28]  Vazken Andréassian,et al.  ‘As simple as possible but not simpler’: What is useful in a temperature-based snow-accounting routine? Part 1 – Comparison of six snow accounting routines on 380 catchments , 2014 .

[29]  Olivier Merlin,et al.  Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate , 2013 .

[30]  T. Stigter,et al.  Origin of recharge and salinity and their role on management issues of a large alluvial aquifer system in the semi-arid Haouz plain, Morocco , 2015, Environmental Earth Sciences.

[31]  Benoît Duchemin,et al.  A combined high and low spatial resolution approach for mapping snow covered areas in the Atlas mountains , 2005 .

[32]  J. M. Sabater,et al.  From near-surface to root-zone soil moisture using different assimilation techniques , 2007 .

[33]  A. Chehbouni,et al.  Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices , 2006 .

[34]  A. Mokssit,et al.  Linkages between common wheat yields and climate in Morocco (1982–2008) , 2013, International Journal of Biometeorology.

[35]  Martha C. Anderson,et al.  A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing , 1997 .

[36]  Salah Er-Raki,et al.  A new irrigation priority index based on remote sensing data for assessing the networks irrigation scheduling , 2013 .

[37]  Y. Kerr,et al.  Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2 images , 2010 .

[38]  F. Giorgi,et al.  Climate change projections for the Mediterranean region , 2008 .

[39]  Benoît Duchemin,et al.  Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET , 2008 .

[40]  Philippe Richaume,et al.  Disaggregation of SMOS Soil Moisture in Southeastern Australia , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[41]  G. Chehbouni,et al.  An Integrated DSS for Groundwater Management Based on Remote Sensing. The Case of a Semi-arid Aquifer in Morocco , 2012, Water Resources Management.

[42]  G. Chehbouni,et al.  Coupling soil-vegetation-atmosphere-transfer model with energy balance model for estimating energy and water vapor fluxes over an olive grove in a semi-arid region , 2012 .

[43]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[44]  O. Merlin,et al.  An original interpretation of the wet edge of the surface temperature–albedo space to estimate crop evapotranspiration (SEB-1S), and its validation over an irrigated area in northwestern Mexico , 2013 .

[45]  Randy A. Peppler,et al.  North Atlantic Oscillation: Concept and an Application , 1987 .

[46]  Gérard Dedieu,et al.  A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images , 2010 .

[47]  S. Somot,et al.  High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-Climate model in Morocco , 2013 .

[48]  Mary P Anderson,et al.  Heat as a Ground Water Tracer , 2005, Ground water.

[49]  David Saurí,et al.  Tourist land use patterns and water demand: Evidence from the Western Mediterranean , 2009 .

[50]  Chris Derksen,et al.  Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections , 2012 .

[51]  Gilles Boulet,et al.  Data assimilation of surface soil moisture, temperature, and evapotranspiration estimates in a SVAT model over irrigated areas in semi-arid regions: what’s best to constraint evapotranspiration predictions? , 2013, Remote Sensing.

[52]  G. Dedieu,et al.  Monitoring of irrigated wheat in a semi‐arid climate using crop modelling and remote sensing data: Impact of satellite revisit time frequency , 2006 .

[53]  W. Wagner,et al.  Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers , 2008 .

[54]  V. Simonneaux,et al.  The use of high‐resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco , 2008 .

[55]  M. S. Moran,et al.  Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index , 1994 .

[56]  I. Benhadj,et al.  Automatic unmixing of MODIS multi-temporal data for inter-annual monitoring of land use at a regional scale (Tensift, Morocco) , 2012 .

[57]  Gérard Dedieu,et al.  Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images , 2008 .

[58]  Two chaotic global models for cereal crops cycles observed from satellite in northern Morocco. , 2014, Chaos.

[59]  Arlen W. Harbaugh,et al.  A modular three-dimensional finite-difference ground-water flow model , 1984 .

[60]  Kathryn Brown,et al.  Water Scarcity: Forecasting the Future With Spotty Data , 2002, Science.

[61]  L. Jarlan,et al.  Polynomial search and global modeling: Two algorithms for modeling chaos. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Salah Er-Raki,et al.  Characterization of Evapotranspiration over Irrigated Crops in a Semi-arid Area (Marrakech, Morocco) Using an Energy Budget Model , 2013 .

[63]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[64]  Salah Er-Raki,et al.  Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques , 2004 .

[65]  Salah Er-Raki,et al.  Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. , 2010 .

[66]  Yoann Malbéteau,et al.  Performance Metrics for Soil Moisture Downscaling Methods: Application to DISPATCH Data in Central Morocco , 2015, Remote. Sens..

[67]  Peter Knippertz,et al.  Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates , 2003 .

[68]  D. Raes,et al.  AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles , 2009 .

[69]  Victor Eijkhout,et al.  River Network Routing on the NHDPlus Dataset , 2011 .

[70]  Etienne Leblois,et al.  The SAFRAN‐ISBA‐MODCOU hydrometeorological model applied over France , 2008 .

[71]  R. Koster,et al.  The Rhône-Aggregation Land Surface Scheme Intercomparison Project: An Overview , 2002 .

[72]  Philip W. Mote,et al.  The Response of Northern Hemisphere Snow Cover to a Changing Climate , 2008 .

[73]  C. de Jong,et al.  Snowmelt and sublimation: field experiments and modelling in the High Atlas Mountains of Morocco , 2004 .

[74]  G. Chehbouni,et al.  Coupling soil-vegetationatmosphere- transfer model with energy balance model for estimating energy and water vapor fluxes over an olive grove in a semi-arid region , 2012 .

[75]  Sergio M. Vicente-Serrano,et al.  Mediterranean water resources in a global change scenario , 2011 .

[76]  A. Chehbouni,et al.  Energy fluxes and melt rate of a seasonal snow cover in the Moroccan High Atlas , 2016 .

[77]  Simon Gascoin,et al.  Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile , 2013 .

[78]  Matthew F. McCabe,et al.  Satellite based observations for seasonal snow cover detection and characterisation in Australia , 2012 .

[79]  Benoît Duchemin,et al.  Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region , 2007 .

[80]  Kelly Elder,et al.  A Distributed Snow-Evolution Modeling System (SnowModel) , 2004 .

[81]  Pierre Etchevers,et al.  An Intercomparison of Three Snow Schemes of Varying Complexity Coupled to the Same Land Surface Model: Local-Scale Evaluation at an Alpine Site , 2001 .

[82]  G. Dedieu,et al.  SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum , 1994 .

[83]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[84]  B. Séguin,et al.  Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches , 2005 .

[85]  José A. Sobrino,et al.  An integrated modelling and remote sensing approach for hydrological study in arid and semi‐arid regions: the SUDMED Programme , 2008 .

[86]  Bruno Monteny,et al.  Estimating sensible heat flux from radiometric temperature over sparse millet , 1994 .

[87]  David A. Robinson,et al.  Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty , 2010 .

[88]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[89]  C. Goodess Mediterranean Climate-Variability and Trends , 2003 .

[90]  M. D. Silva,et al.  CONTRIBUTION DES ISOTOPES DE L'ENVIRONNEMENT POUR LA COMPREHENSION DU FONCTIONNEMENT DE L' AQUIFERE MIO-PLIOQUATERNAIRE DU HAOUZ DE MARRAKECH (MAROC) , 2004 .

[91]  A. Chehbouni,et al.  Derived Crop Coefficients for Winter Wheat Using Different Reference Evpotranspiration Estimates Methods , 2011 .

[92]  Olivier Hagolle,et al.  A Life-Size and Near Real-Time Test of Irrigation Scheduling with a Sentinel-2 Like Time Series (SPOT4-Take5) in Morocco , 2014, Remote. Sens..

[93]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[94]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[95]  Salah Er-Raki,et al.  The SudMed Program and the Joint International Laboratory TREMA: A Decade of Water Transfer Study in the Soil-plant-atmosphere System over Irrigated Crops in Semi-arid Area☆ , 2013 .

[96]  F. Valladares,et al.  Ecological and evolutionary responses of Mediterranean plants to global change. , 2014 .

[97]  Letellier,et al.  Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[98]  Modelling runoff in the Rheraya Catchment (High Atlas, Morocco) using the simple daily model GR4J. Trends over the last decades , 2008 .

[99]  A. Mokssit,et al.  Spatio‐temporal variability of vegetation cover over Morocco (1982–2008): linkages with large scale climate and predictability , 2014 .

[100]  Judit Bartholy,et al.  Med-CORDEX initiative for Mediterranean climate studies , 2016 .