Gyrotron-Based Technological Systems for Material Processing—Current Status and Prospects

[1]  Svilen Sabchevski,et al.  The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging , 2020, Applied Sciences.

[2]  Manfred Thumm,et al.  State-of-the-art of high power gyro-devices and free electron masers update 2003 , 2004 .

[3]  K. Rybakov,et al.  Rapid consolidation of hydroxyapatite using intense millimeter-wave radiation , 2020 .

[4]  D. Mansfeld,et al.  The Temperature Behavior of Microwave Absorption of Metal Oxide Powders When Heated by a 263-GHz Gyrotron Radiation , 2019, Journal of Infrared, Millimeter, and Terahertz Waves.

[5]  M. Glyavin,et al.  Recent Progress in K-band Technological Gyrotrons Development , 2019, 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz).

[6]  K. Rybakov,et al.  Millimeter-Wave Gyrotron System for Research and Application Development. Part 2. High-Temperature Processes in Polycrystalline Dielectric Materials , 2019, Radiophysics and Quantum Electronics.

[7]  G. Denisov,et al.  Millimeter-Wave Gyrotron Research System. I. Description of the Facility , 2019, Radiophysics and Quantum Electronics.

[8]  T. Idehara,et al.  Development and Application of Gyrotrons at FIR UF , 2018, IEEE Transactions on Plasma Science.

[9]  I. Kossyi,et al.  A Subthreshold High-Pressure Discharge Excited by a Microwave Beam: Physical Basics and Applications , 2018, Plasma Physics Reports.

[10]  K. Rybakov,et al.  Microwave resonant sintering of powder metals , 2018 .

[11]  I. Sudiana,et al.  Volumetric Microwave Heating of Mullite Ceramic Using a 28 GHz Gyrotron , 2018 .

[12]  K. Rybakov,et al.  Flash Sintering of Oxide Ceramics under Microwave Heating , 2018 .

[13]  G. Burdick,et al.  Interaction of Electromagnetic Radiation with Matter , 2018 .

[14]  H. Hosono,et al.  Rattling of Oxygen Ions in a Sub-Nanometer-Sized Cage Converts Terahertz Radiation to Visible Light. , 2017, ACS nano.

[15]  M. Tani,et al.  Strong yellow emission of high-conductivity bulk ZnO single crystals irradiated with high-power gyrotron beam , 2017 .

[16]  I. Sudiana,et al.  Effect of High-Frequency Microwaves on the Microhardness of Alumina Ceramic , 2016 .

[17]  I. Sudiana,et al.  Synthesis and Characterization of Microwave Sintered Silica Xerogel Produced from Rice Husk Ash , 2016 .

[18]  T. Idehara,et al.  Gyrotrons for High-Power Terahertz Science and Technology at FIR UF , 2016, 1607.04964.

[19]  I. Sudiana,et al.  The microwave effects on the properties of alumina at high frequencies of microwave sintering , 2016 .

[20]  Toshitaka Idehara,et al.  Development of THz Gyrotrons at IAP RAS and FIR UF and Their Applications in Physical Research and High-Power THz Technologies , 2015, IEEE Transactions on Terahertz Science and Technology.

[21]  M. Thumm,et al.  The role of the native oxide shell on the microwave sintering of copper metal powder compacts , 2015 .

[22]  R. Temkin Development of terahertz gyrotrons for spectroscopy at MIT , 2014 .

[23]  I. Sudiana,et al.  Grain Growth in Millimeter Wave Sintered Alumina Ceramics , 2013 .

[24]  I. Sudiana,et al.  Densification of Alumina Ceramics Sintered by Using Submillimeter Wave Gyrotron , 2013 .

[25]  M. Thumm,et al.  Dilatometric Study and in Situ Resistivity Measurements during Millimeter Wave Sintering of Metal Powder Compacts , 2012 .

[26]  I. Sudiana,et al.  Structural and Microwave Properties of Silica Xerogel Glass-Ceramic Sintered by Sub-millimeter Wave Heating using a Gyrotron , 2012 .

[27]  K. Rybakov,et al.  Fabrication of metal-ceramic functionally graded materials by microwave sintering , 2012, Inorganic Materials: Applied Research.

[28]  V. L. Bratman,et al.  Gyrotron Development for High Power THz Technologies at IAP RAS , 2012 .

[29]  I. Sudiana,et al.  High power pulsed submillimeter wave sintering of zirconia ceramics , 2011, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.

[30]  I. Sudiana,et al.  Rapid Sintering of Silica Xerogel Ceramic Derived from Sago Waste Ash Using Sub-millimeter Wave Heating with a 300 GHz CW Gyrotron , 2011 .

[31]  A. Sinha,et al.  A Review on the Applications of High Power, High Frequency Microwave Source: Gyrotron , 2011 .

[32]  T. Idehara,et al.  Submillimeter wave sintering of pure alumina ceramics , 2010, 35th International Conference on Infrared, Millimeter, and Terahertz Waves.

[33]  Svilen Sabchevski,et al.  The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range — A review of novel and prospective applications , 2008 .

[34]  G. Denisov,et al.  A High-Efficiency Second-Harmonic Gyrotron with a Depressed Collector , 2008 .

[35]  M. Thumm,et al.  Millimeter Wave Sintering of Ceramics , 2007 .

[36]  T. Idehara,et al.  Millimeter and submillimeter wave sintering of ceramics , 2007, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics.

[37]  D. L. Jacobs Microwave Assisted Organic Synthesis , 2007 .

[38]  T. Idehara,et al.  Development of material processing system by using a 300 GHz CW gyrotron , 2006 .

[39]  G. Denisov,et al.  3.5 kW 24 GHz Compact Gyrotron System for Microwave Processing of Materials , 2006 .

[40]  Mikhail Yu. Glyavin,et al.  High Temperature Thermal Insulation System for Millimeter Wave Sintering of B4C , 2005 .

[41]  M. Thumm,et al.  Frequency-tunable CW gyro-BWO with a helically rippled operating waveguide , 2004, IEEE Transactions on Plasma Science.

[42]  M. Glyavin,et al.  Ceramics sintering using a 24 GHz gyrotron system , 2004, The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828).

[43]  Yu. Bykov,et al.  24-84-GHz gyrotron systems for technological microwave applications , 2003, IEEE Transactions on Plasma Science.

[44]  V. P. Karpov,et al.  Development of the 300 GHz/4 kW/CW gyrotron , 2004, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[45]  V. Zapevalov,et al.  High power millimeter and submillimeter wave material processing , 2004, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[46]  M. Glyavin,et al.  Sintering of high-quality ceramics using a compact gyrotron system , 2003 .

[47]  T. Idehara,et al.  Microwave heating of boron carbide rods (平成14年度 福井大学遠赤外領域開発研究センター 研究成果報告書) -- (6 ジャイロトロンによる高品質セラミックス焼結) , 2003 .

[48]  G. Denisov,et al.  Development of a Compact Gyrotron System for Microwave Processing of Materials (特集 〔日本赤外線学会〕創立10周年記年号(その2)) , 2002 .

[49]  W. Rees Interaction of electromagnetic radiation with matter , 2001 .

[50]  Y. Bykov,et al.  30 and 83 GHz millimeter wave sintering of alumina , 2000 .

[51]  M. Kartikeyan,et al.  Design of a 24 GHz, 25-50 kW Technology Gyrotron Operating at the Second Harmonic , 2000 .

[52]  V. A. Flyagin,et al.  Technological gyrotrons with permanent magnet system , 2000, 25th International Conference on Infrared and Millimeter Waves (Cat. No.00EX442).

[53]  Manfred Thumm,et al.  Optimal horn antenna design to excite high-order Gaussian beam modes from TE/sub 0m/ smooth circular waveguide modes , 1999 .

[54]  A. Fliflet,et al.  Gyrotron-powered millimeter-wave beam facility for microwave processing of materials , 1999, IEEE Conference Record - Abstracts. 1999 IEEE International Conference on Plasma Science. 26th IEEE International Conference (Cat. No.99CH36297).

[55]  Manfred Thumm,et al.  Sintering of advanced ceramics using a 30-GHz, 10-kW, CW industrial gyrotron , 1999 .

[56]  A. Fliflet,et al.  Material processing system based on a gyrotron powered millimeter-wave beam , 1998, 25th Anniversary, IEEE Conference Record - Abstracts. 1998 IEEE International Conference on Plasma Science (Cat. No.98CH36221).

[57]  A. Fliflet,et al.  Pulsed 35 GHz gyrotron with overmoded applicator for sintering ceramic compacts , 1996, IEEE Conference Record - Abstracts. 1996 IEEE International Conference on Plasma Science.

[58]  Toshiyuki Kikunaga,et al.  A 28 GHz gyrotron with a permanent magnet system , 1995 .

[59]  Manfred Thumm,et al.  Gyrotrons for technological applications , 1994 .

[60]  V. A. Flyagin,et al.  The Possibilities of Material Processing by Intense Millimeter - Wave Radiation , 1990 .

[61]  H. D. Kimrey,et al.  Techniques for ceramic sintering using microwave energy , 1987, 1987 Twelth International Conference on Infrared and Millimeter Waves.

[62]  J. M. Osepchuk,et al.  A History of Microwave Heating Applications , 1984 .