Quantum Computation and the Evaluation of Tensor Networks

We present a quantum algorithm that additively approximates the value of a tensor network to a certain scale. When combined with existing results, this provides a complete problem for quantum computation. The result is a simple new way of looking at quantum computation in which unitary gates are replaced by tensors and time is replaced by the order in which the tensor network is “swallowed.” We use this result to derive new quantum algorithms that approximate the partition function of a variety of classical statistical mechanical models, including the Potts model.

[1]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[2]  Dorit Aharonov,et al.  The BQP-hardness of approximating the Jones polynomial , 2006, ArXiv.

[3]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[4]  M. Van den Nest Classical simulation of quantum algorithms and the role of classical postprocessing , 2009 .

[5]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[6]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[7]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[8]  John Preskill,et al.  Topological Quantum Computation , 1998, QCQC.

[9]  Joseph Geraci,et al.  A new connection between quantum circuits, graphs and the Ising partition function , 2008, Quantum Inf. Process..

[10]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[11]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[12]  Greg Kuperberg A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem , 2005, SIAM J. Comput..

[13]  David S. Johnson,et al.  Some simplified NP-complete problems , 1974, STOC '74.

[14]  Pawel Wocjan,et al.  The Jones polynomial: quantum algorithms and applications in quantum complexity theory , 2008, Quantum Inf. Comput..

[15]  Maarten Van den Nest,et al.  Simulating quantum computers with probabilistic methods , 2009, Quantum Inf. Comput..

[16]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[17]  D. Aharonov,et al.  The quantum FFT can be classically simulated , 2006, quant-ph/0611156.

[18]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[19]  W Dür,et al.  Completeness of the classical 2D Ising model and universal quantum computation. , 2007, Physical review letters.

[20]  G. Vidal,et al.  Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.

[21]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[22]  G. Vidal,et al.  Classical simulation versus universality in measurement-based quantum computation , 2006, quant-ph/0608060.

[23]  W. Dur,et al.  Renormalization algorithm with graph enhancement , 2008, 0802.1211.

[24]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[25]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[26]  John Watrous,et al.  Quantum algorithms for solvable groups , 2000, STOC '01.

[27]  Dorit Aharonov,et al.  A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.

[28]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[30]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[31]  Peter W. Shor,et al.  Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..

[32]  H. Briegel,et al.  Quantum algorithms for spin models and simulable gate sets for quantum computation , 2008, 0805.1214.

[33]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[34]  Daniel A. Lidar,et al.  On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers , 2008 .

[35]  Leslie Ann Goldberg,et al.  Inapproximability of the Tutte polynomial , 2006, STOC '07.

[36]  D. Aharonov,et al.  Polynomial Quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane Preliminary Version , 2008 .

[37]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[38]  László Lovász,et al.  Approximate Counting and Quantum Computation , 2005, Combinatorics, Probability and Computing.

[39]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.

[40]  M. Bousquet-Mélou,et al.  Exactly Solved Models , 2009 .

[41]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[42]  Martin E. Dyer,et al.  The Relative Complexity of Approximate Counting Problems , 2000, Algorithmica.

[43]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[44]  Joseph Geraci,et al.  A BQP-complete problem related to the Ising model partition function via a new connection between quantum circuits and graphs , 2008, 0801.4833.

[45]  W Dür,et al.  Classical spin models and the quantum-stabilizer formalism. , 2007, Physical review letters.

[46]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.