High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3

Vertical geometry Ni/Au-β-Ga2O3 Schottky rectifiers were fabricated on Hydride Vapor Phase Epitaxy layers on conducting bulk substrates, and the rectifying forward and reverse current-voltage characteristics were measured at temperatures in the range of 25–100 °C. The reverse breakdown voltage (VBR) of these β-Ga2O3 rectifiers without edge termination was a function of the diode diameter, being in the range of 920–1016 V (average value from 25 diodes was 975 ± 40 V, with 10 of the diodes over 1 kV) for diameters of 105 μm and consistently 810 V (810 ± 3 V for 22 diodes) for a diameter of 210 μm. The Schottky barrier height decreased from 1.1 at 25 °C to 0.94 at 100 °C, while the ideality factor increased from 1.08 to 1.28 over the same range. The figure-of-merit (VBR2/Ron), where Ron is the on-state resistance (∼6.7 mΩ cm2), was approximately 154.07 MW·cm−2 for the 105 μm diameter diodes. The reverse recovery time was 26 ns for switching from +5 V to −5 V. These results represent another impressive advanc...

[1]  Jordan D. Greenlee,et al.  Improved Vertical GaN Schottky Diodes with Ion Implanted Junction Termination Extension , 2016 .

[2]  Tatyana I. Feygelson,et al.  Large-Signal RF Performance of Nanocrystalline Diamond Coated AlGaN/GaN High Electron Mobility Transistors , 2014, IEEE Electron Device Letters.

[3]  Akito Kuramata,et al.  Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V , 2016, IEEE Electron Device Letters.

[4]  Akito Kuramata,et al.  1-kV vertical Ga2O3 field-plated Schottky barrier diodes , 2017 .

[5]  C. Meliani,et al.  Fast-Switching GaN-Based Lateral Power Schottky Barrier Diodes With Low Onset Voltage and Strong Reverse Blocking , 2012, IEEE Electron Device Letters.

[6]  Akito Kuramata,et al.  Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics , 2013 .

[7]  Philippe Godignon,et al.  A Survey of Wide Bandgap Power Semiconductor Devices , 2014, IEEE Transactions on Power Electronics.

[8]  B. Pate,et al.  Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties , 2016 .

[9]  Janghyuk Kim,et al.  Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors , 2016 .

[10]  Don Disney,et al.  3.7 kV Vertical GaN PN Diodes , 2014, IEEE Electron Device Letters.

[11]  R. Fornari,et al.  Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3 , 2012 .

[12]  B. Pate,et al.  Nanocrystalline Diamond Integration with III-Nitride HEMTs , 2017 .

[13]  Takeyasu Saito,et al.  Leakage current analysis of diamond Schottky barrier diodes operated at high temperature , 2007 .

[14]  Jaime A. Freitas,et al.  Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition , 2016 .

[15]  S. S. Park,et al.  Vertical and lateral GaN rectifiers on free-standing GaN substrates , 2001 .

[16]  S. Ringel,et al.  Erratum: “Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy” [Appl. Phys. Lett. 108, 052105 (2016)] , 2016 .

[17]  B. Pate,et al.  Nanocrystalline diamond capped AlGaN/GaN high electron mobility transistors via a sacrificial gate process , 2016 .

[18]  Zbigniew Galazka,et al.  3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped $\beta $ -Ga2O3 MOSFETs , 2016, IEEE Electron Device Letters.

[19]  Jaime A. Freitas,et al.  Structural, Optical, and Electrical Characterization of Monoclinic β-Ga2O3 Grown by MOVPE on Sapphire Substrates , 2016, Journal of Electronic Materials.

[20]  Kevin D. Leedy,et al.  Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage , 2016 .

[21]  Shizuo Fujita,et al.  Wide-bandgap semiconductor materials: For their full bloom , 2014 .

[22]  Akito Kuramata,et al.  Development of gallium oxide power devices , 2014 .

[23]  Akito Kuramata,et al.  Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy , 2012 .

[24]  B. J. Baliga,et al.  Power semiconductor device figure of merit for high-frequency applications , 1989, IEEE Electron Device Letters.

[25]  F. Ren,et al.  Temperature-Dependent Characteristics of Ni/Au and Pt/Au Schottky Diodes on β-Ga2O3 , 2017 .

[26]  Akito Kuramata,et al.  Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates , 2012 .

[27]  K. Hobart,et al.  Editors' Choice Communication—A (001) β-Ga2O3 MOSFET with +2.9 V Threshold Voltage and HfO2 Gate Dielectric , 2016 .

[28]  Gwangseok Yang,et al.  Electrical Characteristics of Vertical Ni/β-Ga2O3 Schottky Barrier Diodes at High Temperatures , 2017 .

[29]  M. Ancona,et al.  High-Performance Smoothly Tapered Junction Termination Extensions for High-Voltage 4H-SiC Devices , 2011, IEEE Transactions on Electron Devices.

[30]  Xutang Tao,et al.  Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics , 2017 .