Optimization in computational systems biology

Optimization aims to make a system or design as effective or functional as possible. Mathematical optimization methods are widely used in engineering, economics and science. This commentary is focused on applications of mathematical optimization in computational systems biology. Examples are given where optimization methods are used for topics ranging from model building and optimal experimental design to metabolic engineering and synthetic biology. Finally, several perspectives for future research are outlined.

[1]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[2]  Eva Balsa-Canto,et al.  Hybrid optimization method with general switching strategy for parameter estimation , 2008, BMC Systems Biology.

[3]  Kenneth J. Kauffman,et al.  Advances in flux balance analysis. , 2003, Current opinion in biotechnology.

[4]  D. Ramkrishna,et al.  Metabolic Engineering from a Cybernetic Perspective. 1. Theoretical Preliminaries , 1999, Biotechnology progress.

[5]  J. Bailey,et al.  Optimization of regulatory architectures in metabolic reaction networks , 1996, Biotechnology and bioengineering.

[6]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[7]  Kwang-Hyun Cho,et al.  Experimental Design in Systems Biology, Based on Parameter Sensitivity Analysis Using a Monte Carlo Method: A Case Study for the TNFα-Mediated NF-κ B Signal Transduction Pathway , 2003, Simul..

[8]  Yiannis N Kaznessis,et al.  Optimization of a stochastically simulated gene network model via simulated annealing. , 2006, Biophysical journal.

[9]  P. Pardalos,et al.  Optimization in computational chemistry and molecular biology : local and global approaches , 2000 .

[10]  Bernhard O Palsson,et al.  Isotopomer analysis of myocardial substrate metabolism: A systems biology approach , 2006, Biotechnology and bioengineering.

[11]  Julio R. Banga,et al.  Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems , 2006, BMC Bioinformatics.

[12]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[13]  D. Lebiedz,et al.  Exploiting Optimal Control for Target-Oriented Manipulation of (bio)chemical Systems: , 2005 .

[14]  Panos M. Pardalos,et al.  Optimization in Computational Chemistry and Molecular Biology , 2000 .

[15]  A Kremling,et al.  Systems biology--an engineering perspective. , 2007, Journal of biotechnology.

[16]  Kwang-Hyun Cho,et al.  Inferring biomolecular interaction networks based on convex optimization , 2007, Comput. Biol. Chem..

[17]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[18]  V. Hatzimanikatis,et al.  Thermodynamics-based metabolic flux analysis. , 2007, Biophysical journal.

[19]  Nikolaos V. Sahinidis,et al.  Optimization of metabolic pathways under stability considerations , 2005, Comput. Chem. Eng..

[20]  Jan Van Impe,et al.  Computation of optimal identification experiments for nonlinear dynamic process models: a stochastic global optimization approach , 2002 .

[21]  Matthias Heinemann,et al.  Synthetic biology - putting engineering into biology , 2006, Bioinform..

[22]  Madhukar S. Dasika,et al.  OptCircuit: An optimization based method for computational design of genetic circuits , 2008, BMC Systems Biology.

[23]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[24]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[25]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[26]  S. Schuster,et al.  Game-theoretical approaches to studying the evolution of biochemical systems. , 2005, Trends in biochemical sciences.

[27]  K. S. Brown,et al.  Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model. , 2007, IET systems biology.

[28]  Maria Rodriguez-Fernandez,et al.  A hybrid approach for efficient and robust parameter estimation in biochemical pathways. , 2006, Bio Systems.

[29]  Yiannis N. Kaznessis,et al.  Models for synthetic biology , 2007, BMC Systems Biology.

[30]  Luonan Chen,et al.  Analysis on multi-domain cooperation for predicting protein-protein interactions , 2007, BMC Bioinformatics.

[31]  E. Papoutsakis Equations and calculations for fermentations of butyric acid bacteria , 1984, Biotechnology and bioengineering.

[32]  Daniel Segrè,et al.  From annotated genomes to metabolic flux models and kinetic parameter fitting. , 2003, Omics : a journal of integrative biology.

[33]  Vassilios Sotiropoulos,et al.  Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes , 2007, BMC Systems Biology.

[34]  F. Doyle,et al.  Dynamic flux balance analysis of diauxic growth in Escherichia coli. , 2002, Biophysical journal.

[35]  F. Bruggeman,et al.  Introduction to systems biology. , 2007, EXS.

[36]  Rudiyanto Gunawan,et al.  Iterative approach to model identification of biological networks , 2005, BMC Bioinformatics.

[37]  D. Kell Metabolomics, modelling and machine learning in systems biology – towards an understanding of the languages of cells , 2006, The FEBS journal.

[38]  R. Goodacre Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. , 2004, Journal of experimental botany.

[39]  L. Rédei CHAPTER I – SET-THEORETICAL PRELIMINARIES , 1967 .

[40]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[41]  R. Iyengar,et al.  Toward predictive models of mammalian cells. , 2005, Annual review of biophysics and biomolecular structure.

[42]  Kwang-Hyun Cho,et al.  Inferring gene regulatory networks from temporal expression profiles under time-delay and noise , 2007, Comput. Biol. Chem..

[43]  Gabriel Turinici,et al.  A closed-loop identification protocol for nonlinear dynamical systems. , 2006, The journal of physical chemistry. A.

[44]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[45]  Sven Panke,et al.  Bioengineering novel in vitro metabolic pathways using synthetic biology. , 2007, Current opinion in microbiology.

[46]  Jörg Stelling,et al.  Systems interface biology , 2006, Journal of The Royal Society Interface.

[47]  Bruce Tidor,et al.  Biological network design strategies: discovery through dynamic optimization. , 2006, Molecular bioSystems.

[48]  Kwang-Hyun Cho,et al.  The dynamic systems approach to control and regulation of intracellular networks , 2005, FEBS letters.

[49]  R. Mahadevan,et al.  Estimating optimal profiles of genetic alterations using constraint-based models. , 2005, Biotechnology and bioengineering.

[50]  Trupti Joshi,et al.  Inferring gene regulatory networks from multiple microarray datasets , 2006, Bioinform..

[51]  Jesper Tegnér,et al.  Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Eduardo D. Sontag,et al.  Molecular Systems Biology and Control , 2005, Eur. J. Control.

[53]  M. Nowak,et al.  Evolutionary Dynamics of Biological Games , 2004, Science.

[54]  John E. R. Staddon,et al.  Optima for animals , 1982 .

[55]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[56]  U. Sauer,et al.  Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli , 2007, Molecular systems biology.

[57]  Francis J. Doyle,et al.  Circadian phase entrainment via nonlinear model predictive control , 2006 .

[58]  John Doyle,et al.  Complexity and robustness , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Joshua D. Knowles,et al.  Multiobjective Optimization in Bioinformatics and Computational Biology , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[60]  J. Bailey,et al.  Analysis and design of metabolic reaction networks via mixed‐integer linear optimization , 1996 .

[61]  Antonios Armaou,et al.  A Computational Procedure for Optimal Engineering Interventions Using Kinetic Models of Metabolism , 2006, Biotechnology progress.

[62]  Madhukar S. Dasika,et al.  A Mixed Integer Linear Programming (MILP) Framework for Inferring Time Delay in Gene Regulatory Networks , 2004, Pacific Symposium on Biocomputing.

[63]  Ying Wang,et al.  Theoretical and computational studies of the glucose signaling pathways in yeast using global gene expression data , 2003, Biotechnology and bioengineering.

[64]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[65]  Harvey J. Greenberg,et al.  Opportunities for Combinatorial Optimization in Computational Biology , 2004, INFORMS J. Comput..

[66]  B. Palsson,et al.  Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh's syndrome. , 2007, Molecular genetics and metabolism.

[67]  J. Nielsen Principles of optimal metabolic network operation , 2007, Molecular systems biology.

[68]  Alan Villalobos,et al.  Gene Designer: a synthetic biology tool for constructing artificial DNA segments , 2006, BMC Bioinformatics.

[69]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[70]  Jens Nielsen,et al.  Evolutionary programming as a platform for in silico metabolic engineering , 2005, BMC Bioinformatics.

[71]  Sanjay Mehrotra,et al.  A model-based optimization framework for the inference of regulatory interactions using time-course DNA microarray expression data , 2007, BMC Bioinformatics.

[72]  B. Palsson,et al.  k-Cone analysis: determining all candidate values for kinetic parameters on a network scale. , 2005, Biophysical journal.

[73]  Pablo A. Parrilo,et al.  Efficient classification of complete parameter regions based on semidefinite programming , 2007, BMC Bioinformatics.

[74]  J Doyle,et al.  Highly optimised global organisation of metabolic networks. , 2005, Systems biology.

[75]  Gaudenz Danuser,et al.  Linking data to models: data regression , 2006, Nature Reviews Molecular Cell Biology.

[76]  Concha Bielza,et al.  Machine Learning in Bioinformatics , 2008, Encyclopedia of Database Systems.

[77]  J Timmer,et al.  Parameter estimation in stochastic biochemical reactions. , 2006, Systems biology.

[78]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[79]  Jean Peccoud,et al.  A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts , 2007, Bioinform..

[80]  I. Grossmann,et al.  Recursive MILP model for finding all the alternate optima in LP models for metabolic networks , 2000 .

[81]  Gregory Stephanopoulos,et al.  A Functional Protein Chip for Pathway Optimization and in Vitro Metabolic Engineering , 2004, Science.

[82]  William J. Sutherland,et al.  The best solution , 2005, Nature.

[83]  E. Voit,et al.  Pathway Analysis and Optimization in Metabolic Engineering , 2002 .

[84]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[85]  L. Watson,et al.  Globally optimised parameters for a model of mitotic control in frog egg extracts. , 2005, Systems biology.

[86]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[87]  Mark P. Styczynski,et al.  The intelligent design of evolution , 2006, Molecular systems biology.

[88]  S. Schuster,et al.  The modelling of metabolic systems. Structure, control and optimality. , 1998, Bio Systems.

[89]  F. Llaneras,et al.  An interval approach for dealing with flux distributions and elementary modes activity patterns. , 2007, Journal of theoretical biology.

[90]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[91]  Ursula Klingmüller,et al.  Simulation Methods for Optimal Experimental Design in Systems Biology , 2003, Simul..

[92]  Luonan Chen,et al.  Inferring transcriptional regulatory networks from high-throughput data , 2007, Bioinform..

[93]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[94]  Isabel M. Tienda-Luna,et al.  Reverse engineering gene regulatory networks , 2009, IEEE Signal Processing Magazine.

[95]  Keith E. J. Tyo,et al.  Expanding the metabolic engineering toolbox: more options to engineer cells. , 2007, Trends in biotechnology.

[96]  George B. Dantzig,et al.  The Diet Problem , 1990 .