Applying quantum algorithms to constraint satisfaction problems

Quantum algorithms can deliver asymptotic speedups over their classical counterparts. However, there are few cases where a substantial quantum speedup has been worked out in detail for reasonably-sized problems, when compared with the best classical algorithms and taking into account realistic hardware parameters and overheads for fault-tolerance. All known examples of such speedups correspond to problems related to simulation of quantum systems and cryptography. Here we apply general-purpose quantum algorithms for solving constraint satisfaction problems to two families of prototypical NP-complete problems: boolean satisfiability and graph colouring. We consider two quantum approaches: Grover’s algorithm and a quantum algorithm for accelerating backtracking algorithms. We compare the performance of optimised versions of these algorithms, when applied to random problem instances, against leading classical algorithms. Even when considering only problem instances that can be solved within one day, we find that there are potentially large quantum speedups available. In the most optimistic parameter regime we consider, this could be a factor of over 10 relative to a classical desktop computer; in the least optimistic regime, the speedup is reduced to a factor of over 10. However, the number of physical qubits used is extremely large, and improved fault-tolerance methods will likely be needed to make these results practical. In particular, the quantum advantage disappears if one includes the cost of the classical processing power required to perform decoding of the surface code using current techniques.

[1]  David Pointcheval,et al.  The Whole is Less Than the Sum of Its Parts: Constructing More Efficient Lattice-Based AKEs , 2016, SCN.

[2]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[3]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[4]  Austin G. Fowler,et al.  Time-optimal quantum computation , 2012, 1210.4626.

[5]  Martin Rötteler,et al.  Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.

[6]  Paolo Toth,et al.  A survey on vertex coloring problems , 2010, Int. Trans. Oper. Res..

[7]  Troy Lee,et al.  Quantum Attacks on Bitcoin, and How to Protect Against Them , 2017, Ledger.

[8]  Ying Li,et al.  A magic state’s fidelity can be superior to the operations that created it , 2014, New Journal of Physics.

[9]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[10]  Paul Walton Purdom,et al.  An Average Time Analysis of Backtracking , 1981, SIAM J. Comput..

[11]  Earl T. Campbell,et al.  Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost , 2016, 1606.01904.

[12]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[13]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[14]  A. Fowler,et al.  Low overhead quantum computation using lattice surgery , 2018, 1808.06709.

[15]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[16]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[17]  Mark Howard,et al.  Unifying Gate Synthesis and Magic State Distillation. , 2016, Physical review letters.

[18]  Rodney Van Meter,et al.  ARCHITECTURE-DEPENDENT EXECUTION TIME OF SHOR'S ALGORITHM , 2005, quant-ph/0507023.

[19]  Andris Ambainis,et al.  Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games , 2017, STOC.

[20]  Ashley Montanaro,et al.  Quantum walk speedup of backtracking algorithms , 2015, Theory Comput..

[21]  Tomasz Luczak The chromatic number of random graphs , 1991, Comb..

[22]  Ashley Montanaro,et al.  Quantum speedup of the Travelling Salesman Problem for bounded-degree graphs , 2016, ArXiv.

[23]  Ronald de Wolf,et al.  Optimizing the number of gates in quantum search , 2017, Quantum Inf. Comput..

[24]  Yaoyun Shi,et al.  Randomness in nonlocal games between mistrustful players , 2017, Quantum Inf. Comput..

[25]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[26]  Erdem Alkim,et al.  Post-quantum Key Exchange - A New Hope , 2016, USENIX Security Symposium.

[27]  Isabel Méndez-Díaz,et al.  A Branch-and-Cut algorithm for graph coloring , 2006, Discret. Appl. Math..

[28]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[29]  Vipin Kumar,et al.  On the Efficiency of Parallel Backtracking , 1993, IEEE Trans. Parallel Distributed Syst..

[30]  Stacey Jeffery,et al.  Time-Efficient Quantum Walks for 3-Distinctness , 2013, ICALP.

[31]  Alán Aspuru-Guzik,et al.  Faster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problems , 2015, New Journal of Physics.

[32]  Stephen A. Fenner,et al.  Efficient universal quantum circuits , 2009, Quantum Inf. Comput..

[33]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[34]  Michele Mosca,et al.  Estimating the Cost of Generic Quantum Pre-image Attacks on SHA-2 and SHA-3 , 2016, SAC.

[35]  Christof Zalka GROVER'S QUANTUM SEARCHING ALGORITHM IS OPTIMAL , 1997, quant-ph/9711070.

[36]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[37]  Allen Van Gelder,et al.  Another look at graph coloring via propositional satisfiability , 2008, Discret. Appl. Math..

[38]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[40]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[41]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[42]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[43]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[44]  David Poulin,et al.  Magic state distillation at intermediate size , 2017, Quantum Inf. Comput..

[45]  Martin Rötteler,et al.  Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms , 2017, ASIACRYPT.

[46]  Kianna Wan,et al.  Improved quantum backtracking algorithms through effective resistance estimates , 2017, ArXiv.

[47]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[48]  Konstantinos Panagiotou,et al.  Going after the k-SAT threshold , 2013, STOC '13.

[49]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[50]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[51]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[52]  Emanuel Knill,et al.  Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..

[53]  Dorit Aharonov,et al.  A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.

[55]  Sergiy Butenko,et al.  Graph Domination, Coloring and Cliques in Telecommunications , 2006, Handbook of Optimization in Telecommunications.

[56]  Carlo Mannino,et al.  Models and solution techniques for frequency assignment problems , 2003, 4OR.

[57]  Craig Gidney,et al.  Halving the cost of quantum addition , 2017, Quantum.

[58]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[59]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[60]  Alexei Lisitsa,et al.  Computer-aided proof of Erdős discrepancy properties , 2014, Artif. Intell..

[61]  Konstantinos Panagiotou,et al.  A note on the chromatic number of a dense random graph , 2009, Discret. Math..

[62]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[63]  Aleksandrs Belovs,et al.  Quantum Walks and Electric Networks , 2013, 1302.3143.

[64]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[65]  Rina Dechter,et al.  Experimental Evaluation of Preprocessing Techniques in Constraint Satisfaction Problems , 1989, IJCAI.

[66]  Kostas Stergiou,et al.  Evaluating and Improving Modern Variable and Revision Ordering Strategies in CSPs , 2010, Fundam. Informaticae.

[67]  Allan Sly,et al.  Proof of the Satisfiability Conjecture for Large k , 2014, STOC.

[68]  Pablo San Segundo Carrillo A new DSATUR-based algorithm for exact vertex coloring , 2011 .

[69]  Christof Zalka A Grover-based quantum search of optimal order for an unknown number of marked elements , 1999, quant-ph/9902049.

[70]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[71]  Chris Cade,et al.  Time and space efficient quantum algorithms for detecting cycles and testing bipartiteness , 2018, Quantum Inf. Comput..

[72]  Vahid Lotfi,et al.  A graph coloring algorithm for large scale scheduling problems , 1986, Comput. Oper. Res..

[73]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[74]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[75]  Edward C. Sewell,et al.  An improved algorithm for exact graph coloring , 1993, Cliques, Coloring, and Satisfiability.

[76]  M. Mézard,et al.  Threshold values of random K-SAT from the cavity method , 2006 .

[77]  Peter M. Athanas,et al.  Hardware accelerated SAT solvers - A survey , 2017, J. Parallel Distributed Comput..

[78]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[79]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[80]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[81]  Dax Enshan Koh,et al.  Further extensions of Clifford circuits and their classical simulation complexities , 2015, Quantum Inf. Comput..

[82]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[83]  Igor L. Markov,et al.  Quantum Supremacy Is Both Closer and Farther than It Appears , 2018, ArXiv.

[84]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[85]  Stephen A. Fenner,et al.  Universal Quantum Circuits , 2008, Electron. Colloquium Comput. Complex..

[86]  Marijn J. H. Heule,et al.  Proceedings of SAT Competition 2017: Solver and Benchmark Descriptions , 2017 .

[87]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[88]  John L. Hennessy,et al.  The priority-based coloring approach to register allocation , 1990, TOPL.

[89]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[90]  Y. Salathe,et al.  Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits , 2017, 1701.06933.

[91]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[92]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[93]  Armin Biere,et al.  A survey of recent advances in SAT-based formal verification , 2005, International Journal on Software Tools for Technology Transfer.

[94]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[95]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[96]  Sophia E. Economou,et al.  Robustness of error-suppressing entangling gates in cavity-coupled transmon qubits , 2017, 1703.03514.

[97]  Martin Rötteler,et al.  Factoring using $2n+2$ qubits with Toffoli based modular multiplication , 2016, Quantum Inf. Comput..

[98]  Andrew Steane,et al.  Fast quantum logic gates with trapped-ion qubits , 2017, Nature.

[99]  Nicolas Delfosse,et al.  Almost-linear time decoding algorithm for topological codes , 2017, Quantum.

[100]  Bryan Eastin,et al.  Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.

[101]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[102]  Earl T. Campbell,et al.  Magic state parity-checker with pre-distilled components , 2017, 1709.02214.

[103]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.