Nutritional Value and Use of Microalgae in Aquaculture

This review provides a background on the usage of microalgae in aquaculture, focusing on their nutritional value and transfer of nutrients through food chains. The current status of knowledge is summarized and potential areas of research and industry development are identified. The review is divided into six sections: (1) general attributes of microalgal species used in aquaculture, (2) nutritional properties, (3) production systems, (4) alternatives to fresh algae, (5) use of algae to enrich zooplankton and (6) directions for future research.

[1]  R. J. Shields,et al.  Feeding strategies to achieve correct metamorphosis of Atlantic halibut, Hippoglossus hippoglossus L., using enriched Artemia , 1998 .

[2]  R. McCarrison,et al.  VITAMINS , 1924 .

[3]  P. Southgate,et al.  A Review of the Nutritional Requirements of Bivalves and the Development of Alternative and Artificial Diets for Bivalve Aquaculture , 1999 .

[4]  M. R. Brown,et al.  The vitamin content of microalgae used in aquaculture , 1999, Journal of Applied Phycology.

[5]  P. Thompson,et al.  Effects of nutrient and light limitation on the biochemical composition of phytoplankton , 1990, Journal of Applied Phycology.

[6]  W. Barclay,et al.  Nutritional Enhancement of n‐3 and n‐6 Fatty Acids in Rotifers and Artemia Nauplii by Feeding Spray‐dried Schizochytrium sp. , 1996 .

[7]  Malcolm R. Brown,et al.  The ascorbic acid content of eleven species of microalgae used in mariculture , 1992, Journal of Applied Phycology.

[8]  Malcolm R. Brown,et al.  Preparation and assessment of microalgal concentrates as feeds for larval and juvenile Pacific oyster (Crassostrea gigas). , 2002 .

[9]  M. Tredici,et al.  From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms , 1992, Journal of Applied Phycology.

[10]  Malcolm R. Brown,et al.  Nutritional properties of microalgae for mariculture , 1997 .

[11]  A. Tacon,et al.  Vitamin nutrition in shrimp and fish , 1991 .

[12]  S. M. Barrett,et al.  THF INFLUENCE OF IRRADIANCE ON THF BIOCHEMICAL COMPOSITION OF THE PRYMNESIOPHYTE ISOCHRYSIS SP. (CLONE T‐ISO) 1 , 1993 .

[13]  Concepción Herrero,et al.  Marine microalgae as a potential source of minerals in fish diets , 1986 .

[14]  S. W. Jeffrey,et al.  The gross and amino acid compositions of batch and semi-continuous cultures ofIsochrysis sp. (clone T.ISO),Pavlova lutheri andNannochloropsis oculata , 1993, Journal of Applied Phycology.

[15]  G. Newkirk,et al.  Growth of juvenile Ostrea edulis L. fed Chaetoceros gracilis Schütt of varied chemical composition , 1986 .

[16]  M. R. Brown,et al.  The enrichment and retention of ascorbic acid in rotifers fed microalgal diets , 1998 .

[17]  I. Laing,et al.  Nutritional value of dried algae diets for larvae of Manila clam (Tapes philippinarum) , 1990, Journal of the Marine Biological Association of the United Kingdom.

[18]  H. Nelis,et al.  Variation of ascorbic acid content in different live food organisms , 1995 .

[19]  W. O'Connor,et al.  Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs - a summary. , 2000 .

[20]  Michael A. Borowitzka,et al.  Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production ofPhaeodactylum tricornutum grown in a tubular photobioreactor , 1994, Journal of Applied Phycology.

[21]  K. Reitan,et al.  A review of the nutritional effects of algae in marine fish larvae , 1997 .

[22]  G. Hallegraeff,et al.  Isolation of new nanoplanktonic diatom strains and their evaluation as diets for juvenile Pacific oysters (Crassostrea gigas) , 2002 .

[23]  T. Parsons On the Pigment Composition of Eleven Species of Marine Phytoplankters , 1961 .

[24]  P. Douillet Bacterivory in Pacific oyster Crassostrea gigas larvae , 1993 .

[25]  Peter Coutteau,et al.  The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey , 1992 .

[26]  C. Séguineau,et al.  Vitamin requirements in great scallop larvae , 1996, Aquaculture International.

[27]  G. Wikfors,et al.  IMPACT OF ALGAL RESEARCH IN AQUACULTURE , 2001 .

[28]  C. Tamaru,et al.  The paradox of using background phytoplankton during the larval culture of striped mullet, Mugil cephalus L. , 1994 .

[29]  G. Newkirk,et al.  Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. , 1986 .

[30]  P. Southgate,et al.  Assimilation of dietary phytosterols by Pacific oyster Crassostrea gigas spat , 1999 .

[31]  Malcolm R. Brown,et al.  THE BIOCHEMICAL COMPOSITION OF MARINE MICROALGAE FROM THE CLASS EUSTIGMATOPHYCEAE 1 , 1993 .

[32]  C. Langdon,et al.  The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas Spat , 1981, Journal of the Marine Biological Association of the United Kingdom.

[33]  David L. Parry,et al.  The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture , 1999 .

[34]  R. Roberts,et al.  Factors affecting the food value of diatom strains for post-larval abalone Haliotis iris , 1998 .

[35]  S. M. Barrett,et al.  Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae) , 1993 .

[36]  J. Volkman,et al.  Fatty acids from microalgae of the genus Pavlova , 1991 .

[37]  Malcolm R. Brown,et al.  The amino-acid and sugar composition of 16 species of microalgae used in mariculture , 1991 .

[38]  J. Volkman,et al.  High Incorporation of Essential Fatty Acids by the Rotifer Brachionus plicatilis Fed on the Prymnesiophyte Alga Pavlova lutheri , 1989 .

[39]  Ø. Lie,et al.  Feeding Artemia to larvae of Atlantic halibut (Hippoglossus hippoglossus L.) results in lower larval vitamin A content compared with feeding copepods , 1998 .

[40]  Yuan-Kun Lee,et al.  Commercial production of microalgae in the Asia-Pacific rim , 1997, Journal of Applied Phycology.

[41]  P. Nichols,et al.  Fatty acid and lipid composition of 10 species of microalgae used in mariculture , 1989 .

[42]  M. Izquierdo,et al.  The n−3 highly unsaturated fatty acids requirements of gilthead seabream (Sparus aurata L.) larvae when using an appropriate DHA/EPA ratio in the diet , 1998 .

[43]  C. Langdon,et al.  Replacement of living microalgae with spray-dried diets for the marine mussel Mytilus galloprovincialis , 1999 .

[44]  J. Nell,et al.  Food value of live yeasts and dry yeast-based diets fed to Sydney rock oyster Saccostrea commercialis spat , 1996 .

[45]  W. O'Connor,et al.  Diet and feeding regimens for larval doughboy scallops, Mimachlamys asperrima , 1997 .

[46]  T. McMeekin,et al.  Enrichment of rotifers Brachionus plicatilis with eicosapentaenoic acid and docosahexaenoic acid produced by bacteria , 1998 .

[47]  J. Whyte,et al.  Influence of algal diets on biochemical composition and energy reserves in Patinopecten yessoensis (Jay) larvae , 1989 .

[48]  P. Thompson,et al.  The influence of irradiance on the biochemical composition of three phytoplankton species and their nutritional value for larvae of the Pacific Oyster (Crassostrea gigas) , 1993 .

[49]  P. Sorgeloos,et al.  The use of lipid emulsions as carriers for essential fatty acids in bivalves: a test case with juvenile Placopecten magellanicus , 1996 .

[50]  J. G. Bell,et al.  Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds , 1997 .