Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage.
暂无分享,去创建一个
Bruno Scrosati | Jusef Hassoun | Chong Seung Yoon | Yang-Kook Sun | Jun Lu | Khalil Amine | Seung M. Oh | Seung-Taek Myung | Jun Lu | K. Amine | Yang‐Kook Sun | B. Scrosati | C. Yoon | J. Hassoun | Seung‐Taek Myung | Seung-Min Oh | Jun Lu
[1] J. Tarascon,et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.
[2] Jean-Marie Tarascon,et al. NaxVO2 as possible electrode for Na-ion batteries , 2011 .
[3] P. Hagenmuller,et al. Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt-oxygène-sodium , 1973 .
[4] Jeremy Barker,et al. A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4 F , 2003 .
[5] P. Hagenmuller,et al. Electronic and electrochemical properties of NaxCoO2−y cathode , 1983 .
[6] Donghan Kim,et al. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .
[7] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[8] Shinichi Komaba,et al. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .
[9] Sang‐Chul Jung,et al. Microstructural effect on the photoelectrochemical performance of hematite-Fe2O3 photoanode for water splitting , 2012, Electronic Materials Letters.
[10] Wataru Murata,et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.
[11] J. Dahn,et al. Study of the Reactivity of Na/Hard Carbon in Different Solvents and Electrolytes , 2011 .
[12] Shinichi Komaba,et al. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.
[13] Shinichi Komaba,et al. Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2 , 2009 .
[14] Seung M. Oh,et al. An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. , 2013, Physical chemistry chemical physics : PCCP.
[15] P. Hagenmuller,et al. Structural classification and properties of the layered oxides , 1980 .
[16] S. Komaba,et al. Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and α‐Fe2O3 for Rechargeable Batteries , 2010 .
[17] Donghan Kim,et al. Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .
[18] Yasuo Takeda,et al. Sodium deintercalation from sodium iron oxide , 1994 .
[19] D Carlier,et al. Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.
[20] Rémi Dedryvère,et al. Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .
[21] Investigation of the new P'3-Na0.60VO2 phase: structural and physical properties. , 2009, Inorganic chemistry.
[22] Kazuma Gotoh,et al. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .
[23] C. Yoon,et al. Fe-Fe3O4 Composite Electrode for Lithium Secondary Batteries , 2012 .
[24] Jean-Marie Tarascon,et al. In search of an optimized electrolyte for Na-ion batteries , 2012 .
[25] P. Hagenmuller,et al. Comportement electrochimique des phases NaxCoO2 , 1980 .
[26] A. Goñi,et al. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte , 2013 .
[27] Yang‐Kook Sun,et al. Synthetic optimization of Li[Ni 1/3Co 1/3Mn 1/3]O 2 via co-precipitation , 2004 .
[28] P. Hagenmuller,et al. A study of the NaxTiO2 system by electrochemical deintercalation , 1983 .
[29] B. Scrosati,et al. Lithium batteries: Status, prospects and future , 2010 .
[30] V. Ramar,et al. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. , 2013, Physical chemistry chemical physics : PCCP.
[31] Zhonghua Lu,et al. In Situ X-Ray Diffraction Study of P 2 Na2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 , 2001 .