Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage.

While much research effort has been devoted to the development of advanced lithium-ion batteries for renewal energy storage applications, the sodium-ion battery is also of considerable interest because sodium is one of the most abundant elements in the Earth's crust. In this work, we report a sodium-ion battery based on a carbon-coated Fe3O4 anode, Na[Ni0.25Fe0.5Mn0.25]O2 layered cathode, and NaClO4 in fluoroethylene carbonate and ethyl methanesulfonate electrolyte. This unique battery system combines an intercalation cathode and a conversion anode, resulting in high capacity, high rate capability, thermal stability, and much improved cycle life. This performance suggests that our sodium-ion system is potentially promising power sources for promoting the substantial use of low-cost energy storage systems in the near future.

[1]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[2]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[3]  P. Hagenmuller,et al.  Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt-oxygène-sodium , 1973 .

[4]  Jeremy Barker,et al.  A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4 F , 2003 .

[5]  P. Hagenmuller,et al.  Electronic and electrochemical properties of NaxCoO2−y cathode , 1983 .

[6]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[7]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[8]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[9]  Sang‐Chul Jung,et al.  Microstructural effect on the photoelectrochemical performance of hematite-Fe2O3 photoanode for water splitting , 2012, Electronic Materials Letters.

[10]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[11]  J. Dahn,et al.  Study of the Reactivity of Na/Hard Carbon in Different Solvents and Electrolytes , 2011 .

[12]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[13]  Shinichi Komaba,et al.  Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2 , 2009 .

[14]  Seung M. Oh,et al.  An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. , 2013, Physical chemistry chemical physics : PCCP.

[15]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[16]  S. Komaba,et al.  Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and α‐Fe2O3 for Rechargeable Batteries , 2010 .

[17]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[18]  Yasuo Takeda,et al.  Sodium deintercalation from sodium iron oxide , 1994 .

[19]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[20]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[21]  Investigation of the new P'3-Na0.60VO2 phase: structural and physical properties. , 2009, Inorganic chemistry.

[22]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[23]  C. Yoon,et al.  Fe-Fe3O4 Composite Electrode for Lithium Secondary Batteries , 2012 .

[24]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[25]  P. Hagenmuller,et al.  Comportement electrochimique des phases NaxCoO2 , 1980 .

[26]  A. Goñi,et al.  High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte , 2013 .

[27]  Yang‐Kook Sun,et al.  Synthetic optimization of Li[Ni 1/3Co 1/3Mn 1/3]O 2 via co-precipitation , 2004 .

[28]  P. Hagenmuller,et al.  A study of the NaxTiO2 system by electrochemical deintercalation , 1983 .

[29]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[30]  V. Ramar,et al.  A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. , 2013, Physical chemistry chemical physics : PCCP.

[31]  Zhonghua Lu,et al.  In Situ X-Ray Diffraction Study of P 2 ­ Na2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 , 2001 .