Listing all potential maximal cliques of a graph
暂无分享,去创建一个
[1] Hans L. Bodlaender,et al. A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.
[2] D. Rose. Triangulated graphs and the elimination process , 1970 .
[3] Hans L. Bodlaender,et al. A Tourist Guide through Treewidth , 1993, Acta Cybern..
[4] John R. Gilbert,et al. Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.
[5] Bruno Courcelle,et al. The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues , 1992, RAIRO Theor. Informatics Appl..
[6] Ioan Todinca,et al. Minimal Triangulations for Graphs with "Few" Minimal Separators , 1998, ESA.
[7] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[8] Torben Hagerup,et al. Dynamic Algorithms for Graphs of Bounded Treewidth , 1997, Algorithmica.
[9] Bruno Courcelle,et al. An algebraic theory of graph reduction , 1993, JACM.
[10] Dieter Kratsch,et al. Approximating the Bandwidth for Asteroidal Triple-Free Graphs , 1995, J. Algorithms.
[11] Jeremy P. Spinrad,et al. On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..
[12] Dieter Kratsch,et al. Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..
[13] Dieter Kratsch,et al. The ESA '93 Proceedings , 1994 .
[14] Sampath Kannan,et al. Inferring evolutionary history from DNA sequences , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[15] Hans L. Bodlaender,et al. Treewidth: Algorithmic Techniques and Results , 1997, MFCS.
[16] Anne Berry,et al. Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..
[17] Bruno Courcelle,et al. Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..
[18] Hans L. Bodlaender,et al. Reduction Algorithms for Constructing Solutions in Graphs with Small Treewidth , 1996, COCOON.
[19] Dieter Kratsch,et al. Computing Treewidth and Minimum Fill-In: All You Need are the Minimal Separators , 1993, ESA.
[20] Joseph W. H. Liu,et al. The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..
[21] Maw-Shang Chang,et al. Algorithms for Maximum Matching and Minimum Fill-in on Chordal Bipartite Graphs , 1996, ISAAC.
[22] Andreas Parra,et al. Characterizations and Algorithmic Applications of Chordal Graph Embeddings , 1997, Discret. Appl. Math..
[23] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.
[24] H. L. Bodlaender,et al. Treewidth: Algorithmic results and techniques , 1997 .
[25] Mikkel Thorup,et al. All Structured Programs have Small Tree-Width and Good Register Allocation , 1998, Inf. Comput..
[26] Paul D. Seymour,et al. Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.
[27] Jens Gustedt,et al. Linear-time register allocation for a fixed number of registers , 1998, SODA '98.
[28] Ioan Todinca. Aspects algorithmiques des triangulations minimales des graphes , 1999 .
[29] C. Pandu Rangan,et al. Treewidth of Circular-Arc Graphs , 1994, SIAM J. Discret. Math..
[30] Ioan Todinca,et al. Treewidth and Minimum Fill-in of Weakly Triangulated Graphs , 1999, STACS.
[31] W H LiuJoseph. The multifrontal method for sparse matrix solution , 1992 .
[32] John R. Gilbert,et al. Approximating Treewidth, Pathwidth, and Minimum Elimination Tree Height , 1991, WG.
[33] Dieter Kratsch,et al. Treewidth of Chordal Bipartite Graphs , 1993, J. Algorithms.
[34] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[35] M. Yannakakis. Computing the Minimum Fill-in is NP^Complete , 1981 .
[36] Chak-Kuen Wong,et al. Minimum Fill-in on Circle and Circular-Arc Graphs , 1998, J. Algorithms.
[37] Stefan Arnborg,et al. Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..
[38] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.