Listing all potential maximal cliques of a graph

A potential maximal clique of a graph is a vertex set that induces a maximal clique in some minimal triangulation of that graph. It is known that if these objects can be listed in polynomial time for a class of graphs, the treewidth and the minimum fill-in are polynomially tractable for these graphs. We show here that the potential maximal cliques of a graph can be generated in polynomial time in the number of minimal separators of the graph. Thus, the treewidth and the minimum fill-in are polynomially tractable for all classes of graphs with a polynomial number of minimal separators.

[1]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[2]  D. Rose Triangulated graphs and the elimination process , 1970 .

[3]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[4]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[5]  Bruno Courcelle,et al.  The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues , 1992, RAIRO Theor. Informatics Appl..

[6]  Ioan Todinca,et al.  Minimal Triangulations for Graphs with "Few" Minimal Separators , 1998, ESA.

[7]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[8]  Torben Hagerup,et al.  Dynamic Algorithms for Graphs of Bounded Treewidth , 1997, Algorithmica.

[9]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1993, JACM.

[10]  Dieter Kratsch,et al.  Approximating the Bandwidth for Asteroidal Triple-Free Graphs , 1995, J. Algorithms.

[11]  Jeremy P. Spinrad,et al.  On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..

[12]  Dieter Kratsch,et al.  Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..

[13]  Dieter Kratsch,et al.  The ESA '93 Proceedings , 1994 .

[14]  Sampath Kannan,et al.  Inferring evolutionary history from DNA sequences , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[15]  Hans L. Bodlaender,et al.  Treewidth: Algorithmic Techniques and Results , 1997, MFCS.

[16]  Anne Berry,et al.  Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..

[17]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..

[18]  Hans L. Bodlaender,et al.  Reduction Algorithms for Constructing Solutions in Graphs with Small Treewidth , 1996, COCOON.

[19]  Dieter Kratsch,et al.  Computing Treewidth and Minimum Fill-In: All You Need are the Minimal Separators , 1993, ESA.

[20]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[21]  Maw-Shang Chang,et al.  Algorithms for Maximum Matching and Minimum Fill-in on Chordal Bipartite Graphs , 1996, ISAAC.

[22]  Andreas Parra,et al.  Characterizations and Algorithmic Applications of Chordal Graph Embeddings , 1997, Discret. Appl. Math..

[23]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[24]  H. L. Bodlaender,et al.  Treewidth: Algorithmic results and techniques , 1997 .

[25]  Mikkel Thorup,et al.  All Structured Programs have Small Tree-Width and Good Register Allocation , 1998, Inf. Comput..

[26]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[27]  Jens Gustedt,et al.  Linear-time register allocation for a fixed number of registers , 1998, SODA '98.

[28]  Ioan Todinca Aspects algorithmiques des triangulations minimales des graphes , 1999 .

[29]  C. Pandu Rangan,et al.  Treewidth of Circular-Arc Graphs , 1994, SIAM J. Discret. Math..

[30]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in of Weakly Triangulated Graphs , 1999, STACS.

[31]  W H LiuJoseph The multifrontal method for sparse matrix solution , 1992 .

[32]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, and Minimum Elimination Tree Height , 1991, WG.

[33]  Dieter Kratsch,et al.  Treewidth of Chordal Bipartite Graphs , 1993, J. Algorithms.

[34]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[35]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[36]  Chak-Kuen Wong,et al.  Minimum Fill-in on Circle and Circular-Arc Graphs , 1998, J. Algorithms.

[37]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[38]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.