Humans as blood-feeding sources in sylvatic triatomines of Chile unveiled by next-generation sequencing

[1]  C. Botto-Mahan,et al.  Opportunistic or selective? Stage-dependent feeding behavior in a wild vector of Chagas disease. , 2022, International journal for parasitology.

[2]  C. Botto-Mahan,et al.  Lizards as Silent Hosts of Trypanosoma cruzi , 2022, Emerging infectious diseases.

[3]  Fernando Torres-Pérez,et al.  Testing Phylogeographic Hypotheses in Mepraia (Hemiptera: Reduviidae) Suggests a Complex Spatio-Temporal Colonization in the Coastal Atacama Desert , 2022, Insects.

[4]  C. Botto-Mahan,et al.  Blood-Meal Sources and Trypanosoma cruzi Infection in Coastal and Insular Triatomine Bugs from the Atacama Desert of Chile , 2022, Microorganisms.

[5]  R. Solís,et al.  Trypanosoma cruzi infection in the wild Chagas disease vector, Mepraia spinolai: parasitic load, discrete typing units, and blood meal sources. , 2022, Acta tropica.

[6]  C. Botto-Mahan,et al.  Trypanosoma cruzi DNA in Desmodus rotundus (common vampire bat) and Histiotus montanus (small big-eared brown bat) from Chile. , 2021, Acta tropica.

[7]  E. Dumonteil,et al.  Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia , 2021, Scientific Reports.

[8]  M. Grijalva,et al.  Triatomine Feeding Profiles and Trypanosoma cruzi Infection, Implications in Domestic and Sylvatic Transmission Cycles in Ecuador , 2021, Pathogens.

[9]  P. Hebert,et al.  Vertebrate-Aedes aegypti and Culex quinquefasciatus (Diptera)-arbovirus transmission networks: Non-human feeding revealed by meta-barcoding and next-generation sequencing. , 2020, PLoS neglected tropical diseases.

[10]  A. Dobson,et al.  Preliminary Characterization of Triatomine Bug Blood Meals on the Island of Trinidad Reveals Opportunistic Feeding Behavior on Both Human and Animal Hosts , 2020, Tropical medicine and infectious disease.

[11]  N. Quiroga,et al.  Trypanosoma cruzi-infected triatomines and rodents co-occur in a coastal island of northern Chile , 2020, PeerJ.

[12]  M. Harry,et al.  Dynamics of food sources, ecotypic distribution and Trypanosoma cruzi infection in Triatoma brasiliensis from the northeast of Brazil , 2020, PLoS neglected tropical diseases.

[13]  M. Muñoz,et al.  Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing , 2020, Parasites & Vectors.

[14]  C. Botto-Mahan,et al.  Trypanosomatid Infections among Vertebrates of Chile: A Systematic Review , 2020, Pathogens.

[15]  Paola Salas R [Epidemiology of Chagas disease: high mortality and incidence rate, Coquimbo Region]. , 2020, Revista chilena de infectología.

[16]  R. Gürtler,et al.  Domestic host availability modifies human‐triatomine contact and host shifts of the Chagas disease vector Triatoma infestans in the humid Argentine Chaco , 2020, Medical and veterinary entomology.

[17]  F. Fontúrbel,et al.  Prevalence, infected density or individual probability of infection? Assessing vector infection risk in the wild transmission of Chagas disease , 2020, Proceedings of the Royal Society B.

[18]  C. Botto-Mahan,et al.  Lizards and rabbits may increase Chagas infection risk in the Mediterranean-type ecosystem of South America , 2020, Scientific Reports.

[19]  C. Botto-Mahan,et al.  Lizards and rabbits may increase Chagas infection risk in the Mediterranean-type ecosystem of South America , 2020, Scientific Reports.

[20]  R. Bustamante,et al.  Potential impact of climate change on the geographical distribution of two wild vectors of Chagas disease in Chile: Mepraia spinolai and Mepraia gajardoi , 2019, Parasites & Vectors.

[21]  D. Gorla,et al.  Spatio-temporal characterization of Trypanosoma cruzi infection and discrete typing units infecting hosts and vectors from non-domestic foci of Chile , 2019, PLoS neglected tropical diseases.

[22]  G. Benelli,et al.  What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. , 2018, Acta tropica.

[23]  E. Dumonteil,et al.  Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles , 2018, Scientific Reports.

[24]  Dante D. Cáceres Lillo,et al.  Eco-Epidemiology of Chagas Disease in Chile , 2018, Chagas Disease - Basic Investigations and Challenges.

[25]  S. Alvarado,et al.  Assessing the risk zones of Chagas' disease in Chile, in a world marked by global climatic change , 2018, Memorias do Instituto Oswaldo Cruz.

[26]  A. Solari,et al.  Trypanosoma cruzi over the ocean: Insular zones of Chile with presence of infected vector Mepraia species. , 2017, Acta tropica.

[27]  S. Alvarado,et al.  [What do the numbers tell us about the temporal evolution of Chagas' disease?] , 2017, Revista chilena de infectología.

[28]  M. Canals,et al.  Wing Polymorphism and Trypanosoma cruzi Infection in Wild, Peridomestic, and Domestic Collections of Mepraia spinolai (Hemiptera: Reduviidae) From Chile , 2017, Journal of Medical Entomology.

[29]  A. Bacigalupo,et al.  Feeding profile of Mepraia spinolai, a sylvatic vector of Chagas disease in Chile. , 2016, Acta tropica.

[30]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[31]  C. Barnabé,et al.  Blood meal sources of wild and domestic Triatoma infestans (Hemiptera: Reduviidae) in Bolivia: connectivity between cycles of transmission of Trypanosoma cruzi , 2016, Parasites & Vectors.

[32]  C. Padilla,et al.  Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients. , 2015, The Journal of molecular diagnostics : JMD.

[33]  F. Fontúrbel,et al.  Spatial distribution of an infectious disease in a small mammal community , 2015, The Science of Nature.

[34]  A. Parra,et al.  An entomological and seroepidemiological study of the vectorial‐transmission risk of Chagas disease in the coast of northern Chile , 2015, Medical and veterinary entomology.

[35]  C. Botto-Mahan,et al.  Effects of mammal host diversity and density on the infection level of Trypanosoma cruzi in sylvatic kissing bugs , 2014, Medical and veterinary entomology.

[36]  U. Kitron,et al.  Domestic Animal Hosts Strongly Influence Human-Feeding Rates of the Chagas Disease Vector Triatoma infestans in Argentina , 2014, PLoS neglected tropical diseases.

[37]  P. Brémond,et al.  Risk of transmission of Trypanosoma cruzi by wild Triatoma infestans (Hemiptera: Reduviidae) in Bolivia supported by the detection of human blood meals. , 2013, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[38]  C. Botto-Mahan,et al.  Trypanosoma cruzi genotypes in Mepraia gajardoi from wild ecotopes in northern Chile. , 2013, The American journal of tropical medicine and hygiene.

[39]  C. Botto-Mahan,et al.  Differential pattern of infection of sylvatic nymphs and domiciliary adults of Triatoma infestans with Trypanosoma cruzi genotypes in Chile. , 2012, The American journal of tropical medicine and hygiene.

[40]  A. Mejía-Jaramillo,et al.  High-Resolution Melting (HRM) of the Cytochrome B Gene: A Powerful Approach to Identify Blood-Meal Sources in Chagas Disease Vectors , 2012, PLoS neglected tropical diseases.

[41]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[42]  J. Figuerola,et al.  New Perspectives in Tracing Vector-borne Interaction Networks , 2022 .

[43]  A. Bacigalupo,et al.  Sylvatic foci of the Chagas disease vector Triatoma infestans in Chile: description of a new focus and challenges for control programs. , 2010, Memorias do Instituto Oswaldo Cruz.

[44]  C. Botto-Mahan,et al.  Molecular epidemiology of Chagas disease in the wild transmission cycle: the evaluation in the sylvatic vector Mepraia spinolai from an endemic area of Chile. , 2009, The American journal of tropical medicine and hygiene.

[45]  A. Solari,et al.  Predominance of Trypanosoma cruzi genotypes in two reservoirs infected by sylvatic Triatoma infestans of an endemic area of Chile. , 2009, Acta tropica.

[46]  C. Botto-Mahan,et al.  European rabbits (Oryctolagus cuniculus) are naturally infected with different Trypanosoma cruzi genotypes. , 2009, The American journal of tropical medicine and hygiene.

[47]  R. Favaloro,et al.  Accurate Real-Time PCR Strategy for Monitoring Bloodstream Parasitic Loads in Chagas Disease Patients , 2009, PLoS neglected tropical diseases.

[48]  R. Kent Molecular methods for arthropod bloodmeal identification and applications to ecological and vector‐borne disease studies , 2009, Molecular ecology resources.

[49]  L. Stevens,et al.  A New Method for Forensic DNA Analysis of the Blood Meal in Chagas Disease Vectors Demonstrated Using Triatoma infestans from Chuquisaca, Bolivia , 2008, PloS one.

[50]  C. Botto-Mahan,et al.  Trypanosoma cruzi infection in the sylvatic kissing bug Mepraia gajardoi from the Chilean Southern Pacific Ocean coast. , 2008, Acta tropica.

[51]  S. Sauleda,et al.  Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. , 2007, Acta tropica.

[52]  A. Bacigalupo,et al.  [First finding of Chagas disease vectors associated with wild bushes in the Metropolitan Region of Chile]. , 2006, Revista medica de Chile.

[53]  M. Canals,et al.  Abundance of Mepraia spinolai in a Periurban zone of Chile. , 2002, Memorias do Instituto Oswaldo Cruz.

[54]  D. Engman,et al.  International Journal for Parasitology 31 (2001) 472±481 www.parasitology-online.com Invited Review The life cycle of Trypanosoma cruzi revisited , 2001 .

[55]  M. Molina,et al.  Blood Host Sources of Mepraia spinolai (Heteroptera: Reduviidae), Wild Vector of Chagas Disease in Chile , 2001, Journal of medical entomology.

[56]  T. Unnasch,et al.  Identification of bloodmeals in haematophagous Diptera by cytochrome B heteroduplex analysis , 1999, Medical and veterinary entomology.

[57]  L V Kirchhoff,et al.  American Trypanosomiasis (Chagas Disease) , 2018, Red Book (2018).

[58]  Fabian M Jaksic,et al.  A Long-Term Study of a Small-Mammal Assemblage in the Central Chilean Matorral , 1989, Journal of Mammalogy.

[59]  Fabian M Jaksic,et al.  European Rabbit (Oryctolagus cuniculus L.) in Chile: The Human Dimension Behind a Biological Invasion , 2021 .

[60]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[61]  J. Yáñez Mamíferos de Chile , 2002 .

[62]  J. González Cortés,et al.  Mepraia spinolai in the Southeastern Pacific Ocean coast (Chile) - first insular record and feeding pattern on the Pan de Azúcar island. , 2000, Memorias do Instituto Oswaldo Cruz.