Driven geometric phase gates with trapped ions

We describe a hybrid laser–microwave scheme to implement two-qubit geometric phase gates in crystals of trapped ions. The proposed gates can attain errors below the fault-tolerance threshold in the presence of thermal, dephasing, laser-phase and microwave-intensity noise. Moreover, our proposal is technically less demanding than previous schemes, since it does not require a laser arrangement with interferometric stability. The laser beams are tuned close to a single vibrational sideband to entangle the qubits, while strong microwave drivings provide the geometric character to the gate, and thus protect the qubits from these different sources of noise. A thorough analytic and numerical study of the performance of these gates in realistic noisy regimes is presented.

[1]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[2]  D. Gillespie The mathematics of Brownian motion and Johnson noise , 1996 .

[3]  Andrew M. Steane,et al.  Keeping a single qubit alive by experimental dynamic decoupling , 2010, 1009.6189.

[4]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[5]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[6]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[7]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[8]  A Retzker,et al.  Electron-mediated nuclear-spin interactions between distant nitrogen-vacancy centers. , 2011, Physical review letters.

[9]  M. B. Plenio,et al.  Robust trapped-ion quantum logic gates by continuous dynamical decoupling , 2012 .

[10]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[13]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[14]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[15]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[16]  J. Britton,et al.  Quantum information processing with trapped ions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  M. Johanning,et al.  Designer spin pseudomolecule implemented with trapped ions in a magnetic gradient. , 2011, Physical review letters.

[18]  M. Plenio,et al.  Robust dynamical decoupling with concatenated continuous driving , 2011, 1111.0930.

[19]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[20]  Shi-Biao Zheng Quantum-information processing and multiatom-entanglement engineering with a thermal cavity , 2002, 1202.5382.

[21]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[22]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[23]  Richard Phillips Feynman,et al.  Statistical Mechanics: A Set of Lectures , 1972 .

[24]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[25]  E. Merzbacher Quantum mechanics , 1961 .

[26]  P. C. Haljan,et al.  Entanglement of trapped-ion clock states , 2005 .

[27]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[28]  R. Ozeri,et al.  The trapped-ion qubit tool box , 2011, 1106.1190.

[29]  M. B. Plenio,et al.  Quantum gates and memory using microwave-dressed states , 2011, Nature.

[30]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[31]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[32]  F. Casas,et al.  A pedagogical approach to the Magnus expansion , 2010 .

[33]  F. Schmidt-Kaler,et al.  Precision measurements in ion traps using slowly moving standing waves , 2011, 1105.1710.

[34]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[35]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[36]  J. Preskill Quantum computing: pro and con , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[38]  Shi-Liang Zhu,et al.  Trapped ion quantum computation with transverse phonon modes. , 2006, Physical review letters.

[39]  J M Amini,et al.  Trapped-ion quantum logic gates based on oscillating magnetic fields. , 2008, Physical review letters.

[40]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[41]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[42]  G. Agarwal,et al.  Strong-driving-assisted multipartite entanglement in cavity QED. , 2002, Physical review letters.

[43]  Gerard J. Milburn,et al.  Ion Trap Quantum Computing with Warm Ions , 2000 .

[44]  Light-shift-induced quantum gates for ions in thermal motion. , 2001, Physical review letters.

[45]  Christopher Monroe,et al.  Phonon-mediated entanglement for trapped ion quantum computing , 2010 .

[46]  Emanuel Knill,et al.  Physics: Quantum computing , 2010, Nature.

[47]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[48]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.